Sabemos $$k_n=k_{n-1}+\underbrace{\frac{k_{n-1}}{2}\cdot m}_{\text{birds born this year}}-\underbrace{\frac{k_{n-4}}{2}\cdot m}_{\text{birds born 3 years ago}}$$ and also $k_{-1}=0,k_0=2,k_1=2+m,k_2=\frac{m^2}{2}+2m$.
He utilizado Mathematica para resolver esto, pero por desgracia, el resultado es demasiado tiempo para publicar aquí... (fórmula de látex tiene 50000 caracteres).
Afortunadamente, se simplifica un poco si sustituimos los valores de $m=3,4$.
Para $m=3$:
$$k_n =\frac{1}{219}(x_1\, y_1^n + x_2\, y_2^n + x_3\, y_3^n)=2,5,\tfrac{21}{2},\tfrac{105}{4},\tfrac{501}{8},\dots$$
donde el$x_i$,
$$x_i = 88y_i^2 - 40y_i + 12$$
y el $y_i$ las raíces de,
$$2y^3 - 3y^2 - 3y - 3 = 0$$
Explícitamente,
$$\pequeño k_n = \frac{1}{219} \left(\left(73+\sqrt[3]{73 \left(5767-520 \sqrt{73}\right)}+\sqrt[3]{73 \left(5767+520 \sqrt{73}\right)}\right) 2^{1-n}
\left(1+\sqrt[3]{10-\sqrt{73}}+\sqrt[3]{10+\sqrt{73}}\right)^n+\left(146+i \left(\sqrt{3}+i\right) \sqrt[3]{73 \left(5767-520 \sqrt{73}\right)}+\left(-1-i \sqrt{3}\right)
\sqrt[3]{73 \left(5767+520 \sqrt{73}\right)}\right) \left(\frac{1}{4} \left(2+\left(-1-i \sqrt{3}\right) \sqrt[3]{10-\sqrt{73}}+\left(\sqrt{3}+i\right)
\sqrt[3]{10+\sqrt{73}}\right)\right)^n+\left(146+\left(-1-i \sqrt{3}\right) \sqrt[3]{73 \left(5767-520 \sqrt{73}\right)}+\left(\sqrt{3}+i\right) \sqrt[3]{73 \left(5767+520
\sqrt{73}\right)}\right) \left(\frac{1}{4} \left(2+i \left(\sqrt{3}+i\right) \sqrt[3]{10-\sqrt{73}}+\left(-1-i \sqrt{3}\right) \sqrt[3]{10+\sqrt{73}}\right)\right)^n\right)$$
Para $m=4$:
$$k_n=\frac{1}{134}(x_1\, y_1^n + x_2\, y_2^n + x_3\, y_3^n) = 2, 6, 16, 48, 140, 408,\dots$$
donde el$x_i$,
$$x_i = 38y_i^2 - 24y_i + 4$$
y el $y_i$ las raíces de,
$$y^3 - 2y^2 - 2y - 2 = 0$$
Explícitamente,
$$\small \frac{1}{134} 3^{-n-1} \left(2 \left(134+\sqrt[3]{134 \left(18559-909 \sqrt{201}\right)}+\sqrt[3]{134 \left(18559+909 \sqrt{201}\right)}\right) \left(2+\sqrt[3]{53-3
\sqrt{201}}+\sqrt[3]{53+3 \sqrt{201}}\right)^n+\left(268+i \left(\sqrt{3}+i\right) \sqrt[3]{134 \left(18559-909 \sqrt{201}\right)}+\left(-1-i \sqrt{3}\right) \sqrt[3]{134
\left(18559+909 \sqrt{201}\right)}\right) \left(\frac{1}{2} \left(4+\left(-1-i \sqrt{3}\right) \sqrt[3]{53-3 \sqrt{201}}+\left(\sqrt{3}+i\right) \sqrt[3]{53+3
\sqrt{201}}\right)\right)^n+\left(268+\left(-1-i \sqrt{3}\right) \sqrt[3]{134 \left(18559-909 \sqrt{201}\right)}+\left(\sqrt{3}+i\right) \sqrt[3]{134 \left(18559+909
\sqrt{201}\right)}\right) \left(\frac{1}{2} \left(4+i \left(\sqrt{3}+i\right) \sqrt[3]{53-3 \sqrt{201}}+\left(-1-i \sqrt{3}\right) \sqrt[3]{53+3
\sqrt{201}}\right)\right)^n\right)$$