5 votos

Cómo demostrar que la segunda derivada de $\log\big(\int_{-\infty}^x e^{\frac{-t^2}2} dt\big)$ es $>-1$ ?

Dejemos que $\Phi(x)=\int_{-\infty}^x e^{\frac{-t^2}2} dt$ . ¿Cómo puedo demostrar que $$\left[\frac{e^{\frac{-x^2}2}}{\Phi(x)}\right]'>-1?$$

Podría demostrar que su $lim$ en $-\infty$ es $-1$ y en $\infty$ es $0$ pero la regla de l'Hospital no parece ser suficiente para demostrar la desigualdad. En cero el valor es $-\frac 2\pi$ .

1voto

b.doodle Puntos 43

Dejemos que $\phi(x)=e^\frac{-x^2}{2}$ . Tenga en cuenta que $\phi'(x)=-x\phi(x)$ .

$$x\sqrt{x^2+4}+x^2+2>0\\ \iff x+\sqrt{x^2+4}>\frac{2}{\sqrt{x^2+4}}\\ \iff \frac{1}{2}\left(-x+\sqrt{x^2+4}\right)>-x+\frac{1}{\sqrt{x^2+4}}\\ \iff 1>\frac{1}{2}\left(x+\sqrt{x^2+4}\right)\left(-x+\frac{1}{\sqrt{x^2+4}}\right)\\ \iff \phi(x)>\frac{1}{2}\phi(x)\left(x+\sqrt{x^2+4}\right)\left(-x+\frac{1}{\sqrt{x^2+4}}\right)\\ \overset{\text{integrating}}{\implies} \Phi(x)>\frac{1}{2}\phi(x)\left(x+\sqrt{x^2+4}\right)\\ \iff \left(\Phi(x)-\frac{1}{2}x\phi(x)\right)^2>\phi(x)^2(1+\frac{x^2}{4})\\ \implies x\phi(x)\Phi(x)+\phi(x)^2<\Phi(x)^2\\ \iff \left(\phi(x)/\Phi(x)\right)'>-1.$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X