Bien, utilizar la identidad:
$$\sec\left(x\right):=\frac{1}{\cos\left(x\right)}=\frac{2}{e^{xi}+e^{-xi}}\tag1$$
Así, obtenemos:
$$\mathcal{I}\left(x\right):=\int x\sec\left(x\right)\space\text{d}x=2\int\frac{x}{e^{xi}+e^{-xi}}\space\text{d}x=2\int\frac{xe^{xi}}{1+e^{2xi}}\space\text{d}x\tag2$$
Ahora, substittue $\text{u}=xi$:
$$2\int\frac{xe^{xi}}{1+e^{2xi}}\space\text{d}x=-2\int\frac{\text{u}e^\text{u}}{1+e^{2\text{u}}}\space\text{d}\text{u}\tag3$$
Ahora, sustituto de $\text{v}=e^\text{u}$:
$$-2\int\frac{\text{u}e^\text{u}}{1+e^{2\text{u}}}\space\text{d}\text{u}=-2\int\frac{\ln\left(\text{v}\right)}{1+\text{v}^2}\space\text{d}\text{v}\tag4$$
Ahora, sabemos que:
$$1+\text{v}^2=\left(\text{v}-i\right)\left(\text{v}+i\right)\tag5$$
Por lo tanto, utilizando la fracción parcial descomposición:
$$-2\int\frac{\ln\left(\text{v}\right)}{1+\text{v}^2}\space\text{d}\text{v}=-2\int\frac{\ln\left(\text{v}\right)}{\left(\text{v}-i\right)\left(\text{v}+i\right)}\space\text{d}\text{v}=i\left\{\int\frac{\ln\left(\text{v}\right)}{\text{v}-i}\space\text{d}\text{v}-\int\frac{\ln\left(\text{v}\right)}{\text{v}+i}\space\text{d}\text{v}\right\}\tag6$$