Aunque esta integral converge para cualquier número complejo a $n$ y la de no-cero complejo de número de $b$ , yo sólo capaz de hacer frente a los casos de los números reales $n$$b$ .
Caso $1$: $n=0$
A continuación, $\int_1^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$
$=\int_1^\infty e^{-\frac{x^4}{b^2}}~dx$
$=\int_\frac{1}{b^2}^\infty e^{-\frac{\bigl(\sqrt{|b|}\sqrt[4]x\bigr)^4}{b^2}}~d\left(\sqrt{|b|}\sqrt[4]x\right)$
$=\dfrac{\sqrt{|b|}}{4}\int_\frac{1}{b^2}^\infty x^{-\frac{3}{4}}e^{-x}~dx$
$=\dfrac{\sqrt{|b|}}{4}\Gamma\left(\dfrac{1}{4},\dfrac{1}{b^2}\right)$
Caso $2$: $n\neq0$
Considere la posibilidad de $\int e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$ ,
$\int e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$
$=\int e^{-\frac{x^2(2n-x)^2}{b^2}}~dx$
$=\int\sum\limits_{m=0}^\infty\dfrac{(-1)^mx^{2m}(2n-x)^{2m}}{b^{2m}m!}dx$
$=\int\sum\limits_{m=0}^\infty\sum\limits_{k=0}^{2m}\dfrac{(-1)^mx^{2m}C_k^{2m}(-1)^kx^k(2n)^{2m-k}}{b^{2m}m!}dx$
$=\int\sum\limits_{m=0}^\infty\sum\limits_{k=0}^{2m}\dfrac{(-1)^{m+k}2^{2m-k}n^{2m-k}(2m)!x^{2m+k}}{b^{2m}m!k!(2m-k)!}dx$
$=\sum\limits_{m=0}^\infty\sum\limits_{k=0}^{2m}\dfrac{(-1)^{m+k}2^{2m-k}n^{2m-k}(2m)!x^{2m+k+1}}{b^{2m}m!k!(2m-k)!(2m+k+1)}+C$
Sin embargo, el resultado anterior no puede sustituir a $\infty$ , por lo que podemos dividir $\int_1^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$ $\int_1^ae^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx+\int_a^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$ , $\int_1^ae^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$ utilice el arriba antiderivada resultado, y encontrar el valor adecuado de $a$ tal que $\int_a^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$ puede expresar como se sabe funciones especiales.
Sólo he podido encontrar el valor adecuado de $a$ para el caso de los números reales $n$$b$ .
$\int_a^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$
$=\int_{a-n}^\infty e^{-\left(\frac{(n+x)(n-x)}{b}\right)^2}~d(n+x)$
$=\int_{a-n}^\infty e^{-\frac{(n^2-x^2)^2}{b^2}}~dx$
$=\int_{a-n}^\infty e^{-\frac{x^4-2n^2x^2+n^4}{b^2}}~dx$
$=e^{-\frac{n^4}{b^2}}\int_{a-n}^\infty e^{-\frac{x^2(x^2-2n^2)}{b^2}}~dx$
$\because\int_0^\infty e^{-\frac{x^2(x^2-2n^2)}{b^2}}~dx$
$=\int_0^{\sqrt2|n|}e^{-\frac{x^2(x^2-2n^2)}{b^2}}~dx+\int_{\sqrt2|n|}^\infty e^{-\frac{x^2(x^2-2n^2)}{b^2}}~dx$
$=\int_0^\frac{\pi}{2}e^{-\frac{(\sqrt2|n|\sin x)^2((\sqrt2|n|\sin x)^2-2n^2)}{b^2}}~d(\sqrt2|n|\sin x)+\int_0^\infty e^{-\frac{(\sqrt2|n|\cosh x)^2((\sqrt2|n|\cosh x)^2-2n^2)}{b^2}}~d(\sqrt2|n|\cosh x)$
$=\sqrt2|n|\left(\int_0^\frac{\pi}{2}e^{-\frac{2n^2(\sin^2x)(2n^2\sin^2x-2n^2)}{b^2}}\cos x~dx+\int_0^\infty e^{-\frac{2n^2(\cosh^2x)(2n^2\cosh^2x-2n^2)}{b^2}}\sinh x~dx\right)$
$=\sqrt2|n|\left(\int_0^\frac{\pi}{2}e^\frac{4n^4\sin^2x\cos^2x}{b^2}\cos x~dx+\int_0^\infty e^{-\frac{4n^4\sinh^2x\cosh^2x}{b^2}}\sinh x~dx\right)$
$=\sqrt2|n|\left(\int_0^\frac{\pi}{2}e^\frac{n^4\sin^22x}{b^2}\cos x~dx+\int_0^\infty e^{-\frac{n^4\sinh^22x}{b^2}}\sinh x~dx\right)$
$=\sqrt2|n|\left(\int_0^\frac{\pi}{2}e^\frac{n^4(1-\cos4x)}{2b^2}\cos x~dx+\int_0^\infty e^{-\frac{n^4(\cosh 4x-1)}{2b^2}}\sinh x~dx\right)$
$=\sqrt2|n|e^\frac{n^4}{2b^2}\left(\int_0^\frac{\pi}{2}e^{-\frac{n^4\cos4x}{2b^2}}\cos x~dx+\int_0^\infty e^{-\frac{n^4\cosh 4x}{2b^2}}\sinh x~dx\right)$
$=\sqrt2|n|e^\frac{n^4}{2b^2}\left(\int_0^{2\pi}e^{-\frac{n^4\cos x}{2b^2}}\cos\dfrac{x}{4}d\left(\dfrac{x}{4}\right)+\int_0^\infty e^{-\frac{n^4\cosh x}{2b^2}}\sinh\dfrac{x}{4}d\left(\dfrac{x}{4}\right)\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{2\sqrt2}\left(\int_0^{2\pi}e^{-\frac{n^4\cos x}{2b^2}}\cos\dfrac{x}{4}dx+\int_0^\infty e^{-\frac{n^4\cosh x}{2b^2}}\sinh\dfrac{x}{4}dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{2\sqrt2}\left(\int_{-\pi}^\pi e^{-\frac{n^4\cos(\pi+x)}{2b^2}}\cos\dfrac{\pi+x}{4}d(\pi+x)+\int_0^\infty e^{-\frac{n^4\cosh x}{2b^2}}\sinh\dfrac{x}{4}dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{2\sqrt2}\left(\int_{-\pi}^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{\pi}{4}\cos\dfrac{x}{4}dx-\int_{-\pi}^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{\pi}{4}\sin\dfrac{x}{4}dx+\int_0^\infty e^{-\frac{n^4\cosh x}{2b^2}}\sinh\dfrac{x}{4}dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{4}\left(\int_{-\pi}^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx-\int_{-\pi}^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx+\dfrac{1}{\sqrt2}\int_0^\infty e^{\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx-\dfrac{1}{\sqrt2}\int_0^\infty e^{-\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{4}\left(\int_{-\pi}^0e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx+\int_0^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx-\int_{-\pi}^0e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx-\int_0^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx+\dfrac{1}{\sqrt2}\int_0^\infty e^{\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx-\dfrac{1}{\sqrt2}\int_0^\infty e^{-\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{4}\left(\int_\pi^0e^\frac{n^4\cos(-x)}{2b^2}\cos\dfrac{-x}{4}d(-x)+\int_0^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx-\int_\pi^0e^\frac{n^4\cos(-x)}{2b^2}\sin\dfrac{-x}{4}d(-x)-\int_0^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx+\dfrac{1}{\sqrt2}\int_0^\infty e^{\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx-\dfrac{1}{\sqrt2}\int_0^\infty e^{-\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{4}\left(\int_0^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx+\int_0^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx+\int_0^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx-\int_0^\pi e^\frac{n^4\cos x}{2b^2}\sin\dfrac{x}{4}dx+\dfrac{1}{\sqrt2}\int_0^\infty e^{\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx-\dfrac{1}{\sqrt2}\int_0^\infty e^{-\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx\right)$
$=\dfrac{|n|e^\frac{n^4}{2b^2}}{4}\left(2\int_0^\pi e^\frac{n^4\cos x}{2b^2}\cos\dfrac{x}{4}dx+\dfrac{1}{\sqrt2}\int_0^\infty e^{\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx-\dfrac{1}{\sqrt2}\int_0^\infty e^{-\frac{x}{4}-\frac{n^4\cosh x}{2b^2}}~dx\right)$
$=\dfrac{|n|\pi e^\frac{n^4}{2b^2}}{4}\left(I_\frac{1}{4}\left(\dfrac{n^4}{2b^2}\right)+I_{-\frac{1}{4}}\left(\dfrac{n^4}{2b^2}\right)\right)$ (de acuerdo a http://people.math.sfu.ca/~cbm/aands/page_376.htm)
$\therefore a$ debe tomar $n$ $\int_n^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx=\dfrac{|n|\pi e^{-\frac{n^4}{2b^2}}}{4}\left(I_\frac{1}{4}\left(\dfrac{n^4}{2b^2}\right)+I_{-\frac{1}{4}}\left(\dfrac{n^4}{2b^2}\right)\right)$
Por lo tanto, cuando $n$ $b$ son números reales, $\int_1^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$
$=\int_1^ne^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx+\int_n^\infty e^{-\left(\frac{x(2n-x)}{b}\right)^2}~dx$
$=\left[\sum\limits_{m=0}^\infty\sum\limits_{k=0}^{2m}\dfrac{(-1)^{m+k}2^{2m-k}n^{2m-k}(2m)!x^{2m+k+1}}{b^{2m}m!k!(2m-k)!(2m+k+1)}\right]_1^n+\dfrac{|n|\pi e^{-\frac{n^4}{2b^2}}}{4}\left(I_\frac{1}{4}\left(\dfrac{n^4}{2b^2}\right)+I_{-\frac{1}{4}}\left(\dfrac{n^4}{2b^2}\right)\right)$
$=\sum\limits_{m=0}^\infty\sum\limits_{k=0}^{2m}\dfrac{(-1)^{m+k}2^{2m-k}n^{2m-k}(2m)!(n^{2m+k+1}-1)}{b^{2m}m!k!(2m-k)!(2m+k+1)}+\dfrac{|n|\pi e^{-\frac{n^4}{2b^2}}}{4}\left(I_\frac{1}{4}\left(\dfrac{n^4}{2b^2}\right)+I_{-\frac{1}{4}}\left(\dfrac{n^4}{2b^2}\right)\right)$