$\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\color{#f00}{\int_{0}^{\infty}
{1 + t^{2} \over \pars{a^{2} + b^{2}t^{2}}^{2}}\,\dd t} =
{1 \over \verts{b}^{3}}\int_{0}^{\infty}
{b^{2} + t^{2} \over \pars{a^{2} + t^{2}}^{2}}\,\dd t
\\[5mm] = &\
{1 \over \verts{b}^{3}}\bracks{\pars{b^{2} - a^{2}}\int_{0}^{\infty}
{\dd t \over \pars{t^{2} + a^{2}}^{2}} +
\int_{0}^{\infty}{\dd t \over t^{2} + a^{2}}}
\\[5mm] = &\
{1 \over \verts{b}^{3}}\bracks{\pars{a^{2} - b^{2}}\partiald{}{{a^{2}}} + 1}
\int_{0}^{\infty}{\dd t \over t^{2} + a^{2}} =
{1 \over \verts{b}^{3}}\bracks{\pars{a^{2} - b^{2}}\partiald{}{{a^{2}}} + 1}
{\pi \over 2}\pars{a^{2}}^{-1/2}
\\[5mm] = &\
{\pi \over 2\verts{b}^{3}}\braces{\pars{a^{2} - b^{2}}
\bracks{-\,{1 \over 2}\pars{a^{2}}^{-3/2}} + \pars{a^{2}}^{-1/2}} =
{\pi \over 4\verts{a}^{3}\verts{b}^{3}}\pars{-a^{2} + b^{2} + 2a^{2}}
\\[5mm] = &\
\color{#f00}{{\pi \over 4}\,{a^{2} + b^{2} \over \verts{a}^{3}\verts{b}^{3}}}
\end{align}