El tipo de diagrama creo que usted se refiere a que se llama una "incrustación de diagrama", y no sólo esquemático o conceptual, no están bien definidas las reglas matemáticas para la creación de dichos diagramas. He aquí un ejemplo de esta página:
Para entender la idea, es necesario comprender los principales conceptos de cómo la relatividad general se ocupa de la gravedad: la materia/energía causar el espacio-tiempo que se convierten en curvas, y las partículas en caída libre (no-fuerzas gravitacionales que actúan sobre ellos) siga geodésica trazados en curva el espacio-tiempo, que para más lenta que la de las partículas de luz significa que las rutas que maximizar el tiempo apropiado en relación a otros cercanos a las rutas. Si usted no ha venido a través de estas ideas antes, recomiendo la lectura de una buena no-matemática introducción a los conceptos de la teoría general de la relatividad escrito para un público laico, como teoría General de la Relatividad de la a a la B.
Otra idea para estar familiarizado con es la relatividad de la simultaneidad, dado un determinado espacio-tiempo 4D, hay varias maneras diferentes que usted puede "folio" en una pila de 3D "como el espacio" hypersurfaces ('hipersuperficie', ya que normalmente utilizamos la 'superficie' para referirse a algo que con sólo dos dimensiones), cada uno en representación de la curvatura del espacio en un momento particular en el tiempo de acuerdo a alguna definición de lo que los hechos ocurrieron en el mismo "momento" (es decir, la definición particular de la simultaneidad). La curvatura del espacio-tiempo 4D y 3D hypersurfaces, se define el uso de la métrica para que el espacio-tiempo, que permite calcular la "longitud" de cualquier camino a través del espacio-tiempo, ya sea en el tiempo apropiado, a lo largo de "el tiempo-como" caminos " o distancia adecuada a lo largo de "espacio" como rutas de acceso (consulte la wiki spacetime artículo para una discusión sobre el significado de estos términos, junto con esta respuesta de mina donde puedo discutir el significado físico de la distancia adecuada en el espacio-como caminos). En un espacio particular-como en 3D hipersuperficie, todos los caminos a través del espacio-tiempo que se limita enteramente a que la superficie debe ser como el espacio caminos, y la métrica puede ser utilizado para encontrar la distancia adecuada a lo largo de cualquier camino.
Una vez que usted entienda este contexto, se puede entender el concepto de lo que se llama un "isométrica de la incrustación de diagrama". Básicamente, como un 3D spacelike hipersuperficie representa un "sector" a través de la más grande el espacio-tiempo, usted puede tomar un 2D "sector" a través de la curva 3D hipersuperficie, y para cualquier ruta de acceso limita a esta superficie 2D, la métrica puede ser usada para calcular la distancia adecuada a lo largo de ella también. Entonces la idea es encontrar a crear una "incrustación de diagrama" de una barra curva en la superficie 2D ordinario 3D en el espacio Euclidiano, de tal manera que todas las rutas en el diagrama pueden ser mapeadas a las rutas en la corte en 2D a través de la curva 3D hipersuperficie, y la duración de cada ruta en el diagrama es proporcional a la distancia adecuada a lo largo de la ruta de acceso correspondiente a través de la corte en 2D, como se calcula utilizando la métrica.
Sólo como una incrustación diagrama representa un corte en 2D a través de una curva en el espacio 3D (que en sí es un trozo de un espacio-tiempo 4D), como una analogía puede ayudar a imagínese tomando un 1D rebanada aunque una curva 2D de la superficie, como una hoja de goma con una depresión en el mismo, como se muestra en esta página introductoria sobre la incrustación de diagramas:
La imagen inferior muestra la curva de superficie 2D como aparecería si se sienta en un mayor espacio 3D. La imagen central muestra una versión en 2D del espacio donde la "depresión" es representado como una región circular, como una de 2 dimensiones, un Flatlander, puede visualizar. La línea punteada horizontal en el medio de la imagen representa la 1D "sector" y, a continuación, la parte superior muestra el mismo sector como una curva (una sección transversal de la parte inferior de la imagen), uno que podría ser confinado a un plano 2D para un Flatlander sería capaz de visualizar su forma. La incrustación se utiliza en los diagramas de la relatividad general son muy parecidos a este, pero con todas las dimensiones planteadas por uno, en lugar de una 1D rebanada a través de un espacio 2D, que es realmente curvo, estamos hablando de un corte en 2D a través de nuestro espacio 3D (lo que nosotros consideramos como un avión, como el plano ecuatorial del planeta), cuya curvatura puede entonces ser representado de una manera que nos permite 3D seres visualizarlo.
En el caso de las depresiones que se utilizan a menudo para mostrar la curvatura del espacio alrededor de un cuerpo esférico, como el que he incluido al principio, creo que es más común para crear mediante un Schwarzschild el espacio-tiempo que incluye una sola no-rotación esférica cuerpo, y el uso de las coordenadas de Schwarzschild en que el espacio-tiempo. A continuación, el 3D hypersurfaces puede ser definido como valores fijos de la Schwarzschild tiempo de coordenadas, y luego tomar un corte en 2D a través de la superficie por la elección de un valor fijo de una de las coordenadas angulares, mientras que permite a la coordenada radial y el otro angular de coordenadas para variar. Para la región del espacio en un radio mayor que la de la superficie del cuerpo esférico (o más grande que el horizonte de sucesos, en el caso de un agujero negro), la incrustación de objetos en el diagrama para este "exterior de la solución de Schwarzschild" sería un Flamm del paraboloide.
Tenga en cuenta que desde la curva el espacio-tiempo en este caso es esféricamente simétrica, no debería en realidad no importa lo que fija un valor para el ángulo de coordenadas, puede elegir un plano 2D que pasa a través del centro de la esférica cuerpo (r=0) en cualquier orientación y la incrustación de objetos diagrama que muestra la curvatura del espacio en esa división sería el mismo (en términos de la inferior-dimensiones analogía representado en el diagrama de arriba, usted puede cambiar el ángulo de la línea de puntos representa la 1D de la rebanada a través de la curva espacio 2D, pero en la medida en la línea de puntos que pasó por el centro de la forma esférica de la región de la curva que representa la sección transversal sería idéntico). Así que, básicamente, de cómo iba a responder a su petición de "un paralelo con el clásico de la representación, excepto con el espacio en todas partes en lugar de un solo plano"--es la naturaleza de estos diagramas que sólo pueden representar la curvatura en un solo corte en 2D (ya que se puede visualizar una barra curva en la superficie 2D, pero directamente no se puede visualizar una curva en el espacio 3D, único modelo matemáticamente), pero usted puede elegir muchos sectores diferentes y obtener una incrustación diagrama para cada sector si desea obtener una vista más amplia de la curvatura a lo largo de todas las regiones del espacio 3D.
Otro punto es que usted debe resistir la tentación de pensar que estos diagramas tienen el propósito de explicar la gravedad de la atracción en términos de objetos que se caen "hacia abajo" en una depresión, como seemd hacer cuando usted dijo que estos diagramas muestran la "gravedad doblar el espacio hacia abajo, y así atraer a los objetos en la abolladura que crea". Todo lo que importa a estos diagramas es que representan las longitudes de los caminos a través de la correspondiente superficie del espacio-tiempo precisa, la orientación de la incrustación de objetos en el diagrama es completamente irrelevante! Usted podría girar en torno a que las "depresiones" se convertiría en "las colinas".