$$\begin{align}
I
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\,\operatorname{Li}_{2}{\left(xy\right)}\operatorname{Li}_{2}{\left(x\left(1-y\right)\right)}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}w\,\frac{\operatorname{Li}_{2}{\left(w\right)}\operatorname{Li}_{2}{\left(x-w\right)}}{x};~~~\small{\left[xy=w\right]}\\
&=\int_{0}^{1}\mathrm{d}w\int_{w}^{1}\mathrm{d}x\,\frac{\operatorname{Li}_{2}{\left(w\right)}\operatorname{Li}_{2}{\left(x-w\right)}}{x}\\
&=\int_{0}^{1}\mathrm{d}w\,\operatorname{Li}_{2}{\left(w\right)}\int_{w}^{1}\mathrm{d}x\,\frac{\operatorname{Li}_{2}{\left(x-w\right)}}{x}\\
&=\int_{0}^{1}\mathrm{d}w\,\operatorname{Li}_{2}{\left(w\right)}\int_{0}^{1-w}\mathrm{d}v\,\frac{\operatorname{Li}_{2}{\left(v\right)}}{w+v};~~~\small{\left[x-w=v\right]}\\
&=\int_{0}^{1}\mathrm{d}w\,\operatorname{Li}_{2}{\left(w\right)}\int_{0}^{1}\mathrm{d}u\,\frac{\left(1-w\right)\operatorname{Li}_{2}{\left(\left(1-w\right)u\right)}}{w+\left(1-w\right)u};~~~\small{\left[\frac{v}{1-w}=u\right]}\\
&=\int_{0}^{1}\mathrm{d}w\,\left(\frac{1-w}{w}\right)\operatorname{Li}_{2}{\left(w\right)}\int_{0}^{1}\mathrm{d}u\,\frac{\operatorname{Li}_{2}{\left(\left(1-w\right)u\right)}}{1+\left(\frac{1-w}{w}\right)u}\\
&=\int_{0}^{1}\mathrm{d}t\,\left(\frac{t}{1-t}\right)\operatorname{Li}_{2}{\left(1-t\right)}\int_{0}^{1}\mathrm{d}u\,\frac{\operatorname{Li}_{2}{\left(tu\right)}}{1+\left(\frac{t}{1-t}\right)u};~~~\small{\left[1-w=t\right]}\\
&=:\int_{0}^{1}\mathrm{d}t\,\left(\frac{t}{1-t}\right)\operatorname{Li}_{2}{\left(1-t\right)}\,G{\left(t\right)}.\\
\end{align}$$
La función de $G{(t)}$ es evaluado a continuación.
Para $0<a\le1\land0<b$,
$$\begin{align}
J{\left(a,b\right)}
&:=\int_{0}^{1}\frac{\operatorname{Li}_{2}{\left(ax\right)}}{1+bx}\,\mathrm{d}x\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}-\int_{0}^{1}\frac{\ln{\left(1+bx\right)}}{b}\left[-\frac{\ln{\left(1-ax\right)}}{x}\right]\,\mathrm{d}x;~~~\small{IBPs}\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}\int_{0}^{1}\frac{\ln{\left(1-ax\right)}\ln{\left(1+bx\right)}}{x}\,\mathrm{d}x\\
&=\small{\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}\int_{0}^{1}\frac{\ln^{2}{\left(1-ax\right)}+\ln^{2}{\left(1+bx\right)}-\ln^{2}{\left(\frac{1-ax}{1+bx}\right)}}{2x}\,\mathrm{d}x}\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}\int_{0}^{1}\frac{\ln^{2}{\left(1-ax\right)}}{2x}\,\mathrm{d}x\\
&~~~~~+\frac{1}{b}\int_{0}^{1}\frac{\ln^{2}{\left(1+bx\right)}}{2x}\,\mathrm{d}x-\frac{1}{b}\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-ax}{1+bx}\right)}}{2x}\,\mathrm{d}x\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}\\
&~~~~~-\frac{1}{2b}\int_{1}^{\frac{1-a}{1+b}}\frac{\left(a+by\right)\ln^{2}{\left(y\right)}}{\left(1-y\right)}\cdot\frac{(-1)\left(a+b\right)}{\left(a+by\right)^2}\,\mathrm{d}y;~~~\small{\left[\frac{1-ax}{1+bx}=y\right]}\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}\\
&~~~~~-\frac{1}{2b}\int_{\frac{1-a}{1+b}}^{1}\frac{\left(a+b\right)\ln^{2}{\left(y\right)}}{\left(1-y\right)\left(a+by\right)}\,\mathrm{d}y\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}\\
&~~~~~-\frac{1}{2b}\int_{\frac{1-a}{1+b}}^{1}\left[\frac{1}{1-y}+\frac{b}{a+by}\right]\ln^{2}{\left(y\right)}\,\mathrm{d}y\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}\\
&~~~~~-\frac{1}{2b}\int_{\frac{1-a}{1+b}}^{1}\frac{\ln^{2}{\left(y\right)}}{1-y}\,\mathrm{d}y-\frac12\int_{\frac{1-a}{1+b}}^{1}\frac{\ln^{2}{\left(y\right)}}{a+by}\,\mathrm{d}y\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}\\
&~~~~~-\frac{1}{b}\int_{0}^{\gamma}\frac{\ln^{2}{\left(1-z\right)}}{2z}\,\mathrm{d}z;~~~\small{\left[1-y=z,~\gamma:=\frac{a+b}{1+b}\right]}\\
&~~~~~-\frac12\int_{\lambda}^{\mu}\frac{\ln^{2}{\left(\frac{w}{\mu}\right)}}{b\left(1+w\right)}\,\mathrm{d}w;~~~\small{\left[\frac{by}{a}=w,~\lambda:=\frac{\left(1-a\right)b}{a\left(1+b\right)},~\mu:=\frac{b}{a}\right]}\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}-\frac{1}{b}S_{1,2}{\left(\gamma\right)}\\
&~~~~~-\frac{\ln^{2}{\left(\mu\right)}}{2b}\int_{\lambda}^{\mu}\frac{\mathrm{d}w}{1+w}+\frac{\ln{\left(\mu\right)}}{b}\int_{\lambda}^{\mu}\frac{\ln{\left(w\right)}}{1+w}\,\mathrm{d}w\\
&~~~~~-\frac{1}{2b}\int_{\lambda}^{\mu}\frac{\ln^{2}{\left(w\right)}}{1+w}\,\mathrm{d}w\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}-\frac{1}{b}S_{1,2}{\left(\gamma\right)}\\
&~~~~~-\frac{\ln^{2}{\left(\mu\right)}}{2b}\ln{\left(\frac{1+\mu}{1+\lambda}\right)}\\
&~~~~~+\frac{\ln{\left(\mu\right)}}{b}\left[\operatorname{Li}_{2}{\left(-w\right)}+\ln{\left(w\right)}\ln{\left(1+w\right)}\right]_{w=\lambda}^{w=\mu}\\
&~~~~~\small{-\frac{1}{b}\left[\frac16\ln{\left(\frac{w^3}{1+w}\right)}\ln^{2}{\left(1+w\right)}-S_{1,2}{\left(-w\right)}-S_{1,2}{\left(\frac{1}{1+w}\right)}\right]_{w=\lambda}^{w=\mu}}\\
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}-\frac{1}{b}S_{1,2}{\left(\gamma\right)}\\
&~~~~~-\frac{\ln^{2}{\left(\frac{b}{a}\right)}\ln{\left(1+b\right)}}{2b}\\
&~~~~~\small{+\frac{\ln{\left(\mu\right)}}{b}\left[\operatorname{Li}_{2}{\left(-\mu\right)}+\ln{\left(\mu\right)}\ln{\left(1+\mu\right)}-\operatorname{Li}_{2}{\left(-\lambda\right)}-\ln{\left(\lambda\right)}\ln{\left(1+\lambda\right)}\right]}\\
&~~~~~\small{+\frac{1}{b}\left[S_{1,2}{\left(-\mu\right)}+S_{1,2}{\left(\frac{1}{1+\mu}\right)}-S_{1,2}{\left(-\lambda\right)}-S_{1,2}{\left(\frac{1}{1+\lambda}\right)}\right]}\\
&~~~~~\small{-\frac{1}{6b}\left[\ln{\left(\frac{\mu^3}{1+\mu}\right)}\ln^{2}{\left(1+\mu\right)}-\ln{\left(\frac{\lambda^3}{1+\lambda}\right)}\ln^{2}{\left(1+\lambda\right)}\right]}\\
\end{align}$$
y por último,
$$\begin{align}
&=\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{1}{b}S_{1,2}{\left(a\right)}+\frac{1}{b}S_{1,2}{\left(-b\right)}-\frac{1}{b}S_{1,2}{\left(\frac{a+b}{1+b}\right)}\\
&~~~~~-\frac{\ln^{2}{\left(\frac{b}{a}\right)}\ln{\left(1+b\right)}}{2b}+\frac{\ln{\left(\frac{b}{a}\right)}}{b}\left[\operatorname{Li}_{2}{\left(-\frac{b}{a}\right)}-\operatorname{Li}_{2}{\left(\frac{\left(a-1\right)b}{a\left(b+1\right)}\right)}\right]\\
&~~~~~+\frac{\ln{\left(\frac{b}{a}\right)}}{b}\left[\ln{\left(\frac{b}{a}\right)}\ln{\left(1+b\right)}-\ln{\left(\frac{1-a}{1+b}\right)}\ln{\left(\frac{a+b}{a\left(1+b\right)}\right)}\right]\\
&~~~~~\small{+\frac{1}{b}\left[S_{1,2}{\left(-\frac{b}{a}\right)}+S_{1,2}{\left(\frac{a}{a+b}\right)}-S_{1,2}{\left(\frac{\left(a-1\right)b}{a\left(b+1\right)}\right)}-S_{1,2}{\left(\frac{a\left(1+b\right)}{a+b}\right)}\right]}\\
&~~~~~+\frac{1}{6b}\left[\ln{\left(\frac{\left(1-a\right)^3}{\left(1+b\right)^2}\right)}\ln^{2}{\left(\frac{a+b}{a\left(1+b\right)}\right)}\right]\\
&~~~~~\small{+\frac{1}{6b}\left[\ln{\left(\frac{b^3}{a^2\left(a+b\right)}\right)}\ln^{2}{\left(\frac{a+b}{a\left(1+b\right)}\right)}-\ln{\left(\frac{b^3}{a^2\left(a+b\right)}\right)}\ln^{2}{\left(\frac{a+b}{a}\right)}\right]}\\
&=\frac{1}{b}\left[S_{1,2}{\left(a\right)}+S_{1,2}{\left(-b\right)}+S_{1,2}{\left(-\frac{b}{a}\right)}-S_{1,2}{\left(\frac{a+b}{1+b}\right)}\right]\\
&~~~~~+\frac{1}{b}\left[S_{1,2}{\left(\frac{a}{a+b}\right)}-S_{1,2}{\left(\frac{\left(a-1\right)b}{a\left(b+1\right)}\right)}-S_{1,2}{\left(\frac{a\left(1+b\right)}{a+b}\right)}\right]\\
&~~~~~+\frac{\ln{\left(1+b\right)}\operatorname{Li}_{2}{\left(a\right)}}{b}+\frac{\ln{\left(\frac{b}{a}\right)}}{b}\left[\operatorname{Li}_{2}{\left(-\frac{b}{a}\right)}-\operatorname{Li}_{2}{\left(\frac{\left(a-1\right)b}{a\left(b+1\right)}\right)}\right]\\
&~~~~~+\frac{\ln^{2}{\left(\frac{b}{a}\right)}\ln{\left(1+b\right)}}{2b}-\frac{\ln{\left(\frac{b}{a}\right)}}{b}\ln{\left(\frac{1-a}{1+b}\right)}\ln{\left(\frac{a+b}{a\left(1+b\right)}\right)}\\
&~~~~~+\frac{1}{6b}\left[\ln{\left(\frac{\left(1-a\right)^3}{\left(1+b\right)^2}\right)}\ln^{2}{\left(\frac{a+b}{a\left(1+b\right)}\right)}\right]\\
&~~~~~+\frac{\ln{\left(1+b\right)}\ln{\left(\frac{b^3}{a^2\left(a+b\right)}\right)}}{6b}\left[\ln{\left(1+b\right)}-2\ln{\left(\frac{a+b}{a}\right)}\right]\\
\end{align}$$
$\ln^{2}{\left(\frac{a+b}{a\left(1+b\right)}\right)}=\ln^{2}{\left(1+b\right)}+\ln^{2}{\left(\frac{a+b}{a}\right)}-2\ln{\left(1+b\right)}\ln{\left(\frac{a+b}{a}\right)}$
Así, por $0<a\le1$ tenemos:
$$\begin{align}
G{\left(a\right)}
&:=J{\left(a,\frac{a}{1-a}\right)}\\
&=\frac{1-a}{a}\left[S_{1,2}{\left(a\right)}+S_{1,2}{\left(\frac{a}{a-1}\right)}+S_{1,2}{\left(\frac{1}{a-1}\right)}+S_{1,2}{\left(\frac{1-a}{2-a}\right)}\right]\\
&~~~~~+\frac{a-1}{a}\left[S_{1,2}{\left(a-1\right)}+S_{1,2}{\left(\frac{1}{2-a}\right)}+S_{1,2}{\left(a(2-a)\right)}\right]\\
&~~~~~+\frac{\left(a-1\right)\ln{\left(1-a\right)}}{a}\left[\operatorname{Li}_{2}{\left(a\right)}+\operatorname{Li}_{2}{\left(\frac{1}{a-1}\right)}-\operatorname{Li}_{2}{\left(a-1\right)}\right]\\
&~~~~~\small{+\frac{\left(a-1\right)\ln{\left(1-a\right)}\left[\ln^{2}{\left(1-a\right)}-9\ln{\left(1-a\right)}\ln{\left(2-a\right)}-3\ln^{2}{\left(2-a\right)}\right]}{6a}}\\
&=\frac{1-a}{a}\left[2\,S_{1,2}{\left(a\right)}-S_{1,2}{\left(a(2-a)\right)}\right]\\
&~~~~~-\frac{\left(1-a\right)\ln{\left(1-a\right)}}{a}\left[\operatorname{Li}_{2}{\left(a\right)}-2\operatorname{Li}_{2}{\left(a-1\right)}-\zeta{(2)}\right]\\
&~~~~~+\frac{2\left(1-a\right)}{a}\left[\ln^{2}{\left(1-a\right)}\ln{\left(2-a\right)}\right].\\
\end{align}$$
Y así,
$$\begin{align}
\frac{1-x}{x}\,G{\left(1-x\right)}
&=2\,S_{1,2}{\left(1-x\right)}-S_{1,2}{\left(1-x^2\right)}\\
&~~~~~-\ln{\left(x\right)}\left[\operatorname{Li}_{2}{\left(1-x\right)}-2\operatorname{Li}_{2}{\left(-x\right)}-\zeta{(2)}\right]\\
&~~~~~+2\ln^{2}{\left(x\right)}\ln{\left(1+x\right)}\\
&=\small{-2\operatorname{Li}_{3}{\left(x\right)}+2\ln{\left(x\right)}\operatorname{Li}_{2}{\left(x\right)}+\ln^{2}{\left(x\right)}\ln{\left(1-x\right)}+2\,\zeta{(3)}}\\
&~~~~~\small{+\operatorname{Li}_{3}{\left(x^2\right)}-\ln{\left(x^2\right)}\operatorname{Li}_{2}{\left(x^2\right)}-\frac12\ln^{2}{\left(x^2\right)}\ln{\left(1-x^2\right)}-\zeta{(3)}}\\
&~~~~~-\ln{\left(x\right)}\left[\operatorname{Li}_{2}{\left(1-x\right)}-2\operatorname{Li}_{2}{\left(-x\right)}-\zeta{(2)}\right]\\
&~~~~~+2\ln^{2}{\left(x\right)}\ln{\left(1+x\right)}\\
&=\operatorname{Li}_{3}{\left(x^2\right)}-2\operatorname{Li}_{3}{\left(x\right)}\\
&~~~~~-\ln{\left(x\right)}\left[\operatorname{Li}_{2}{\left(1-x\right)}+\operatorname{Li}_{2}{\left(x^2\right)}-\zeta{(2)}\right]\\
&~~~~~-\ln^{2}{\left(x\right)}\ln{\left(1-x\right)}+\zeta{(3)}\\
&=2\operatorname{Li}_{3}{\left(x\right)}+4\operatorname{Li}_{3}{\left(-x\right)}-\ln{\left(x\right)}\operatorname{Li}_{2}{\left(x\right)}\\
&~~~~~-2\ln{\left(x\right)}\operatorname{Li}_{2}{\left(-x\right)}+\zeta{(3)}\\
\end{align}$$
Ahora podemos reducir el deseado integral doble de una suma de una sola de las integrales de la siguiente manera:
$$\begin{align}
I
&=\int_{0}^{1}\mathrm{d}t\,\left(\frac{t}{1-t}\right)\operatorname{Li}_{2}{\left(1-t\right)}\,G{\left(t\right)}\\
&=\int_{0}^{1}\mathrm{d}x\,\left(\frac{1-x}{x}\right)\operatorname{Li}_{2}{\left(x\right)}\,G{\left(1-x\right)}.\\
\end{align}$$
El resto de la evaluación debe ser sencillo, así que os dejo la obtención de un valor final, como un ejercicio para el intrépido lector. ;)