4 votos

Laplace ' ecuación de s para resolver un sistema en una plaza

Resolver el sistema en la Plaza $S = \{0 < x < 1, 0 < y < 1\}$: $$\begin{cases} \Delta u = 0 \ \ \ &\text{for} \ \ (x,y)\in S\\ u(x,0) = 0, \ u(x,1) = x \ \ \ &\text{for} \ \ 0 < x < 1\\ u_x(0,y) = 0, \ u_x(1,y) = y^2 \ \ \ &\text{for} \ \ 0 < y < 1 \end{casos} $$

¿Intento de solución - sabemos que la solución general es %#% $ #% aplicando la condición inicial $$u(x,y) = \sum_{n=0}^{\infty}A_n \sin \beta_n x(\beta_n \cosh \beta_n y - \sinh \beta_n y)$ $ entonces pienso $$u(x,1) = x = \sum_{n=0}^{\infty}A_n \sin \beta_n x(\beta_n \cosh \beta_n - \sinh \beta_n)$$$A_n = \frac{2}{\beta_n\cosh \beta_n - \sinh\beta_n}\int_{0}^{1} x\sin \beta_n x dx = \frac{2\sin(\beta_n) - 2\beta_n \cos(\beta_n)}{\beta_n^{3}\cosh \beta_n - \beta_n^{2}\sinh \beta_n}$A_n$ But I am really not understanding how to solve this problem. Please provide steps on how to solve this. Assuming I get $u_x(1,y) = y ^ 2$? Me parece que tendríamos $ then how do I apply the condition that $ $ después $ de $$u_x(x,y) = \sum_{n=1}^{\infty}A_n \beta_n \cos \beta_n x(\beta_n \cosh \beta_n y - \sinh \beta_n y)$

1voto

Morgan Weiss Puntos 724

Dado que el $\Delta u = 0$ esto implica que $\nabla^2 u = 0$ o \begin{equation} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial^2 y} = 0 \end{equation} Deje $u = X(x)Y(y)$ \begin{equation} Y \frac{d^2 X}{d^2 x^2} + X \frac{d^2 Y}{d^2 y} = 0 \end{equation} Ahora tenemos dos casos para las condiciones de contorno $$\text{Case 1:} \ u_1(x,0) = 0, \ \ u_1(x,1) = 0, \ \ u_{1x}(0,y) = 0, \ \ u_{1x}(1,y) = y^2$$ $$\text{Case 2:} \ u_2(x,0) = 0, \ \ u_2(x,1) = x, \ \ u_{2x}(0,y) = 0, \ \ u_{2x}(1,y) = 0$$ Ahora, utilizando la ecuación de $(2)$ caso $1$ hemos $$\frac{1}{Y}\frac{d^2 Y}{d^2 y} = -\frac{1}{X}\frac{d^2 X}{d^2 x^2} = -p^2 \ \ (\text{say})$$ A continuación, la solución para esto tenemos $$Y = c_1 \cos(p y) + c_2 \sin(py) \ \ \text{and} \ \ X = c_3 e^{px} + c_4 e^{-p x}$$ Por lo tanto $$u = XY = (c_1 \cos(py) + c_2 \sin(py))(c_3 e^{px} + c_4 e^{-px})$$ Ahora se aplicará en caso de $1$ tenemos $$c_1 = 0, \ \ 0 = (c_3 e^{px} + c_4 e^{-px})(c_2 \sin(p))$$ Entonces $$\sin(p) = 0 = \sin(n\pi) \Rightarrow p = n\pi$$ También se $u_{1x}(0,y) = 0$ $$0 = (c_3(n\pi) - c_4(n\pi))(c_2 \sin(n\pi y)) \Rightarrow (c_3 - c_4)c_2\sin(n\pi y) = 0$$ Ahora $u_{1x}(1,y) = y^2$ \begin{align*} y^2 &= (n\pi c_3 e^{n\pi} - n\pi c_4 e^{-n\pi} )(c_2 \sin(n\pi y))\\ &\Rightarrow y^2 = \sum_{n=1}^{\infty}(A_n e^{n\pi} - B_n e^{-n\pi})\sin(n \pi y) \end{align*} donde $$A_n = \frac{2}{e^{n\pi}}\int_{0}^{1}y^2 \sin(n\pi y) dy = \ldots = \frac{2e^{\pi(-n)}((2 - \pi^2 n^2)\cos(\pi n) + 2\pi n(\sin(\pi n) - 2 ) }{\pi^3 n^3}$$ y $$B_n = -\frac{2}{e^{-n\pi}}\int_{0}^{1}y^2 \sin(n\pi y)dy = \ldots = -\frac{2e^{\pi n}((2 - \pi^2 n^2)\cos(\pi n) + 2\pi n(\sin(\pi n) - 2 ) }{\pi^3 n^3}$$ Por lo tanto la solución es $$u = \sum_{n=1}^{\infty}(A_n e^{n\pi} - B_n e^{-n \pi})\sin(n\pi y)$$ De manera similar para el caso de $2$, podemos encontrar la solución a $$\frac{1}{Y}\frac{d^2 Y}{d^2 y} = -\frac{1}{X}\frac{d^2 X}{d^2 x^2} = -p^2$$ $$\Rightarrow u = (c_1 \cos(py) + c_2 \sin(py))(c_3 e^{px} + c_4 e^{-px})$$ utilizando el caso de $2$, obtenemos $$u_2(x,0) = 0 \Rightarrow c_3 + c_4 = 0 \Rightarrow c_3 = -c_4$$ Así $$ u = (c_1 \cos(py) + c_2 \sin(py))(c_3 e^{px} + c_4 e^{-px})$$ la aplicación de $u_{2x}(0,y) = 0$ \begin{align*} 0 &= c_3(e^{py} - e^{-py})p c_2 \cos(p)\\ \Rightarrow c_2 &= 0 \end{align*} Así tenemos $$u = c_1 c_3 \cos(px)(e^{py} - e^{-py})$$ Ahora, la aplicación de $u_{2x}(1,y) = 0$ $$\sin(p) = 0 = \sin(n\pi) \Rightarrow p = n\pi$$ Así $$u = c_1 c_3 \cos(n\pi x)(e^{n\pi y} - e^{-n\pi y})$$ Tenemos la solución general $$u = \sum_{n=1}^{\infty}A_n \cos(n\pi x)(e^{n\pi y} - e^{-n\pi y})$$ La aplicación de $u_2(x,1) = x$ hemos $$x = \sum_{n=1}^{\infty}A_n \cos(n\pi x)(e^{n \pi} - e^{-n\pi})$$ donde $$A_n = \frac{2}{e^{n\pi} - e^{-n\pi}}\int_{0}^{1} x \cos(n\pi x) dx = \ldots = \frac{2(\pi n \sin(\pi n) + \cos(\pi n) - 1 )}{\pi^2 (e^{\pi n} - e^{\pi(-n)})n^2 }$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X