Vamos a utilizar la inducción para probar la identidad (equivalente a la dada) que
1) $\displaystyle\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}=2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k-1}{k-1}\bigg]$ $\;\;$para $0\le k\le\frac{n}{2}$ y la identidad
2) $\displaystyle\sum_{j\ge0}\binom{n}{2j+1}\binom{j}{k}=2^{n-2k-1}\binom{n-k-1}{k}$ $\;\;$para $0\le k\le\frac{n-1}{2}$.
Si $n=1$, $k=0$ y a ambos lados de ambas identidades son 1;
así que se supone que ambas identidades son válidos para algunos $n\in\mathbb{N}$.
1) $\displaystyle\sum_{j\ge0}\binom{n+1}{2j}\binom{j}{k}=\sum_{j\ge0}\bigg[\binom{n}{2j}+\binom{n}{2j-1}\bigg]\binom{j}{k}=\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}+\sum_{j\ge0}\binom{n}{2j-1}\binom{j}{k}$
$\;\;\;\displaystyle=\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}+\sum_{l\ge0}\binom{n}{2l+1}\binom{l+1}{k}$
$\;\;\;\displaystyle=\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}+\sum_{l\ge0}\binom{n}{2l+1}\bigg[\binom{l}{k}+\binom{l}{k-1}\bigg]$
$\;\;\;\displaystyle=\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}+\sum_{l\ge0}\binom{n}{2l+1}\binom{l}{k}+\sum_{l\ge0}\binom{n}{2l+1}\binom{l}{k-1}$
$\;\;\;\displaystyle=2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k-1}{k-1}\bigg]+2^{n-2k-1}\binom{n-k-1}{k}+2^{n-2k+1}\binom{n-k}{k-1}$
$\;\;\;\displaystyle=2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k-1}{k-1}+\binom{n-k-1}{k}+4\binom{n-k}{k-1}\bigg]$
$\;\;\;\displaystyle=2^{n-2k-1}\bigg[\binom{n-k+1}{k}+\binom{n-k}{k}+\binom{n-k}{k-1}+2\binom{n-k}{k-1}\bigg]$
$\;\;\;\displaystyle=2^{n-2k-1}\bigg[2\binom{n-k+1}{k}+2\binom{n-k}{k-1}\bigg]=2^{n-2k}\bigg[\binom{n-k+1}{k}+\binom{n-k}{k-1}\bigg]$,
$\;\;\;\;$ así, la identidad 1) tiene por $n+1$.
2) $\displaystyle\sum_{j\ge0}\binom{n+1}{2j+1}\binom{j}{k}=\sum_{j\ge0}\bigg[\binom{n}{2j+1}+\binom{n}{2j}\bigg]\binom{j}{k}=\sum_{j\ge0}\binom{n}{2j+1}\binom{j}{k}+\sum_{j\ge0}\binom{n}{2j}\binom{j}{k}$
$\;\;\;\displaystyle=2^{n-2k-1}\binom{n-k-1}{k}+2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k-1}{k-1}\bigg]$
$\;\;\;\displaystyle=2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k-1}{k}+\binom{n-k-1}{k-1}\bigg]=2^{n-2k-1}\bigg[\binom{n-k}{k}+\binom{n-k}{k}\bigg]$
$\;\;\;\displaystyle=2^{n-2k}\binom{n-k}{k}$,
$\;\;\;$así, la identidad 2) tiene por $n+1$.