$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large%
\int_{0}^{x}\frac{\sin\pars{t}}{1 + t^{2}}\,\dd t}
=\Im\int_{0}^{x}\frac{\sin\pars{t}}{t - \ic}\,\dd t
=\Im\int_{-\ic}^{x - \ic}\frac{\sin\pars{t + \ic}}{t}\,\dd t
\\[5mm]&=\Im\int_{-\ic}^{x - \ic}\frac{\sin\pars{t}\cosh\pars{1} + \cos\pars{t}\sinh\pars{1}\ic}{t}\,\dd t
\\[1cm]&=\cosh\pars{1}\bracks{\Im\int_{0}^{x - \ic}\frac{\sin\pars{t}}{t}\,\dd t
-\Im\int_{0}^{-\ic}\frac{\sin\pars{t}}{t}\,\dd t}
\\[5mm]&+\sinh\pars{1}\bracks{%
-\Re\int_{0}^{x - \ic}\frac{1 - \cos\pars{t}}{t}\,\dd t
+\Re\int_{0}^{-\ic}\frac{1 - \cos\pars{t}}{t}\,\dd t
+\Re\int_{-\ic}^{x - \ic}\frac{\dd t}{t}}
\\[1cm]&=\cosh\pars{1}\bracks{%
\Im\,{\rm Si}\pars{x - \ic} - \Im\,{\rm Si}\pars{-\ic}}
\\[5mm]&+\sinh\pars{1}\bracks{%
-\Re\,{\rm Cin}\pars{x - \ic} + \Re\,{\rm Cin}\pars{-\ic}
+\Re\ln\pars{1 + x\ic}}
\\[1cm]&=\color{#66f}{\large\cosh\pars{1}\bracks{%
\Im\,{\rm Si}\pars{x - \ic} - \Im\,{\rm Si}\pars{-\ic}}}
\\[5mm]&\color{#66f}{\large+\sinh\pars{1}\bracks{%
-\Re\,{\rm Cin}\pars{x - \ic} + \Re\,{\rm Cin}\pars{-\ic}}
+ \half\,\sinh\pars{1}\ln\pars{1 + x^{2}}}
\end{align}
$\ds{\,{\rm Si}}$ $\ds{\,{\rm Cin}}$ son
El seno y el Coseno Funciones Integrales, respectivamente.