Si $B \in M_{n \times n}(\mathbb{R})$ y $B^2 x = 0_n$ para algunos vectores $x \neq 0_n$ y $B$ no es inversible.
Conseguir que $$\mbox{rank} ( B^2 ) < n$$ but I can't seem to be able to link it to $B $ . Perhaps I need to use diagonalization to deal with the power, but that only works if $B$ es diagonalizable. Se agradecería cualquier insinuación.