Encuentra la suma de los n términos de la serie $\frac{1} {1\cdot2\cdot3\cdot4} + \frac{1} {2\cdot3\cdot4\cdot5} + \frac{1} {3\cdot4\cdot5\cdot6}\ldots $
Por favor sugiere un enfoque para esta tarea.
Encuentra la suma de los n términos de la serie $\frac{1} {1\cdot2\cdot3\cdot4} + \frac{1} {2\cdot3\cdot4\cdot5} + \frac{1} {3\cdot4\cdot5\cdot6}\ldots $
Por favor sugiere un enfoque para esta tarea.
$\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} (\dfrac{k+3}{k(k+1)(k+2)(k+3)} - \dfrac{k}{k(k+1)(k+2)(k+3)})$ $ = \dfrac{1}{3}(\dfrac{1}{k(k+1)(k+2)} - \dfrac{1}{(k+1)(k+2)(k+3)})$
$\sum_{k=1}^{\infty}\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} \dfrac{1}{2*3} = \dfrac{1}{18}$
@moron Sí, tienes razón. Para los primeros n términos:
$\sum_{k=1}^{n}\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} (\dfrac{1}{1*2*3} - \dfrac{1}{(n+1)(n+2)(n+3)})$
[editar] más detalles
$\sum_{k=1}^{n}\dfrac{1}{k(k+1)(k+2)(k+3)} = \sum_{k=1}^{n} \dfrac{1}{3} (\dfrac{1}{k(k+1)(k+2)} - \dfrac{1}{(k+1)(k+2)(k+3)})$ $= \dfrac{1}{3} [\sum_{k=1}^{n} \dfrac{1}{k(k+1)(k+2)} - \sum_{k=1}^{n} \dfrac{1}{(k+1)(k+2)(k+3)}]$ $= \dfrac{1}{3} [\sum_{k=0}^{n-1} \dfrac{1}{(k+1)(k+2)(k+3)} - \sum_{k=1}^{n} \dfrac{1}{(k+1)(k+2)(k+3)}]$ $= \dfrac{1}{3} (\dfrac{1}{1*2*3} - \dfrac{1}{(n+1)(n+2)(n+3)})$
+1: Aunque la pregunta diga los primeros n términos, esto se puede adaptar fácilmente para eso.
Esto es similar a lo que ha dicho Branimir, pero muestra cómo podemos extender el resultado a $$\sum_{k=1}^n {1 \over k(k+1) \cdots (k+m)}, \qquad m \in \mathbb{N}.$$
Podemos construir el resultado a partir de las identidades $${1 \over k(k+1)} = {1 \over k} - { 1 \over k+1}, \qquad (1)$$ $${1 \over k(k+1)(k+2)} = {1 \over 2} \left( {1 \over k(k+1)} - { 1 \over (k+1)(k+2)} \right),$$ $${1 \over k(k+1)(k+2)(k+3)} = {1 \over 3} \left( {1 \over k(k+1)(k+2)} - { 1 \over (k+1)(k+2)(k+3)} \right), \quad \textrm{ etc...}$$
Escribe $S_1 = \sum_{k=1}^n {1 \over k(k+1)},$ $S_2 = \sum_{k=1}^n {1 \over k(k+1)(k+2)},$ etc
Sumando para $S_1$ usando (1) todos los términos en el RHS se cancelan para obtener el clásico $$S_1 = \sum_{k=1}^n {1 \over k(k+1)} = 1 – {1 \over n+1} = {n \over n+1}.$$ Luego sumamos la serie para $S_2$ usando este resultado obtenido para $S_1,$ y así sucesivamente.
CONSEJO $\rm\displaystyle\ \frac{1}{(k+1)(k+2)(k+3)(k+4)} = \frac{1}{6(k+1)} - \frac{1}{2(k+2)}+\frac{1}{2(k+3)}-\frac{1}{6(k+4)}$
$\rm\ f(k+1)-f(k)\: = $ arriba $\rm\displaystyle\ \Rightarrow\ f(k) \:=\: c_0 + \frac{c_1}{k+1}\ \:+\:\ \frac{c_2}{k+2}\ \:+\:\ \frac{c_3}{k+3}$
Calculando se obtiene $\rm\ c_0,c_1,c_2,c_3 \ =\ 1/18,\ -1/6,\ 1/3,\ -1/6$.
Para observaciones sobre la teoría de grupos detrás de la suma racional indefinida, vea mi publicación aquí
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.
3 votos
Type "sum 1/(n(n+1)(n+2)(n+3))" into Wolfram Alpha.