$p$ % Prime $\chi(n) = (\frac{n}{p})$es un % de carácter de Dirichlet no principales $\bmod p$.
Desde $gcd(k,p ) = 1$: $$\sum_{n=1}^p \chi(n) e^{-2i \pi nk/p} = \overline{\chi(k)} \sum_{n=1}^p \chi(nk) e^{-2i \pi nk/p}=\overline{\chi(k)}\sum_{n=1}^p \chi(n) e^{-2i \pi n/p}$$ we have that its discrete Fourier transform is $\hat{\chi}(k) = \frac{1}{\sqrt{p}}\sum_{n=1}^p \chi(n) e ^ {-2i \pi nk/p} = \overline{\chi(k)}G(\chi)$ where $G(\chi) = \hat{\chi}(1)$ and $|G(\chi) | = 1$.
Utilizando el DFT de $\chi(n-1)$ $\hat{\chi}(k) e^{-2i \pi k/p}$ y el unitario-ness de la DFT: $$\sum_{n=1}^p \chi(n) \overline{\chi(n-1)} = \sum_{k=1}^p \hat{\chi}(k)\overline{\hat{\chi}(k)} e^{2i \pi k/p} = |G(\chi)|^2 \sum_{k=1}^p |\chi(k)|^2 e^{2i \pi k/p}=\sum_{k=1}^{p-1} e^{2i \pi k/p}= -1$ $