Vamos $$S=\sum_{n=0}^\infty\frac{\operatorname{Li}_{1/2}\left(-2^{-2^{-n}}\right)}{\sqrt{2^n}},\tag1$$ donde $\operatorname{Li}_a(z)$ es el polylogarithm. Para $a=1/2$ puede ser representado como $$\begin{align}\operatorname{Li}_{1/2}(z)&=\sum_{k=1}^\infty\frac{z^k}{\sqrt k}\tag2\\&=\int_0^\infty\frac z{\sqrt{\pi\,x}\ \left(e^x-z\right)}\,dx.\tag3\end{align}$$
Cómo encontrar una forma cerrada de expresión para $S$?