5 votos

¿Cuántas líneas son necesarias en el plano para obtener todos los ángulos de $1$ $359$ grados?

Estoy tratando de resolver el siguiente problema:

¿Cuántas líneas son necesarias en el plano para obtener todos los ángulos de $1$ $359$ grados? Podemos mover las líneas en paralelo.

Estoy pensando que ya mueve en paralelo no cambia los ángulos podemos ponerlos que se intersecan en un punto. Es obvio que $180$ ángulos son suficientes ($0,...,179$ grados). Necesidad de encontrar el número mínimo.

Para cada número de $1$ $359$ allí debe ser dos rectas que se intersecan en ese ángulo.

5voto

Hagen von Eitzen Puntos 171160

La completa escasa Wichmann gobernante $W(2,5)$ $$0, 1, 2, 5, 10, 15, 26, 37, 48, 59, 70, 76, 82, 88, 89, 90 $$ puede generar todo entero diferencias de hasta el $90$. Como $\alpha$ inmediatamente también nos da $180^\circ-\alpha$, $180^\circ +\alpha$ y $360^°-\alpha$, esta es una solución, aunque no necesariamente de forma mínima (que es el mínimo para un conjunto de dar todos los números hasta el $90$ inmediata diferencias).

No puede existir una solución con menos de $16$ líneas y algunos de los números más grandes de $90$. Pero no podemos hacer mucho mejor que estos $16$ líneas: con el fin De generar $90$ diferentes ángulos entre pares, se necesitan al menos $90$ pares, por lo tanto, al menos, $14$ líneas porque ${13\choose 2}<90$.

3voto

Oleg567 Puntos 9849

Tratando de encontrar $15$ de las líneas, Sólo he encontrado $2$ decenas de (no equivalente) este tipo de series pero con defecto en $1$ ángulo.

Y es interesante, que se encuentran todos los juegos de estos defectos sólo:

  • $9^{\circ} \;(171^{\circ})$;
  • $27^{\circ} \;(153^{\circ})$;
  • $63^{\circ} \;(117^{\circ})$;
  • $81^{\circ} \;(99^{\circ})$.

Ejemplos:

defecto de $9^{\circ}$:
$0,4,23,29,39,41,56,61,87,101,126,129,136,137,150$;
$0,8,36,40,42,43,55,60,65,86,98,108,119,135,149$;
$0,5,8,22,28,29,40,55,59,75,98,100,123,136,146$;
$0,7,11,13,25,40,48,50,53,74,85,104,105,121,143$;
$0,8,26,32,39,68,69,73,85,88,90,102,113,123,140$;
$0,5,26,36,38,42,59,60,89,100,103,108,115,128,135$;

defecto de $27^{\circ}$:
$0,1,3,9,22,38,67,93,103,107,122,127,132,139,150$;
$0,2,6,7,9,22,39,47,57,68,91,96,110,122,146$;
$0,5,23,31,36,53,56,60,62,72,100,114,115,135,146$;
$0,1,5,24,49,62,64,71,74,92,95,103,109,129,145$;
$0,1,8,10,13,31,34,48,59,63,83,102,108,124,144$;
$0,15,16,20,54,60,71,73,82,85,95,96,103,106,132$;

defecto de $63^{\circ}$:
$0,3,25,32,33,46,51,74,84,86,90,101,110,121,146$;
$0,4,7,15,20,25,37,39,68,94,95,104,118,140,146$;
$0,2,8,31,41,59,66,89,92,102,106,111,126,127,138$;
$0,11,12,17,30,33,53,58,62,82,89,97,99,123,137$;
$0,3,4,21,31,33,40,56,71,76,82,90,95,114,136$;
$0,16,20,21,22,55,56,65,73,80,92,103,105,106,134$;

defecto de $81^{\circ}$:
$0,1,15,18,20,24,31,52,60,85,95,107,132,142,154$;
$0,5,20,36,45,53,55,58,79,102,106,108,109,120,148$;
$0,1,7,10,25,33,38,50,54,73,84,111,123,125,145$;
$0,5,13,33,54,84,85,98,110,111,121,123,127,130,145$;
$0,3,5,24,41,50,51,54,70,85,93,107,113,118,125$;
$0,6,13,16,18,23,37,38,64,67,71,78,106,114,123$.

Por lo tanto, estoy convencido de que Hagen von Eitzen's respuesta "$16$ líneas" es la respuesta final.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X