Soy muy nuevo en la resolución y me gustaría utilizarla para demostrar los dos argumentos siguientes. También me gustaría indicar las leyes de equivalencia utilizadas para obtener la forma normal de Skolem de las premisas y la conclusión negada:
1) $Premise ~ 1: ∃x ~ toad(x) \\ Premise ~ 2: ∀x ~ (toad(x) → slimy(x)) \\ Premise ~ 3: ∀x ~ (slimy(x) → muddy(x)) \\ Conclusion: ∃x ~ (muddy(x) ∧ toad(x))$
Intento:
Aparte de convertir la conclusión negada en la forma normal de la cláusula:
1. ∃x.(muddy(x) ∧ toad(x)) (Initial Conclusion)
2. ¬∃x.(muddy(x) ∧ toad(x)) (Negated Conclusion)
3. ∀x.¬(muddy(x) ∧ toad(x)) (DeMorgan Quantifer)
4. ∀x.(¬muddy(x) ∨ ¬toad(x)) (DeMorgan)
5. (¬muddy(x1) ∨ ¬toad(x1)) (∀-elim)
Además de convertir la premisa 1:
1. ∃x.toad(x) (Initial Premise 1)
2. toad(c) (Skolemization)
Aparte de convertir la premisa 2:
1. ∀x.(toad(x) → slimy(x)) (Initial Premise 2)
2. ∀x.(¬toad(x) ∨ slimy(x)) (Def. →)
3. (¬toad(x2) ∨ slimy(x2)) (∀-elim)
Aparte de convertir la premisa 3:
1. ∀x.(slimy(x) → muddy(x)) (Initial Premise 3)
2. ∀x.(¬slimy(x) ∨ muddy(x)) (Def. →)
3. (¬slimy(x3) ∨ muddy(x3)) (∀-elim)
Prueba de resolución real:
[ 1] {¬muddy(x1), ¬toad(x1)} Negated Conclusion
[ 2] {toad(c)} Premise 1
[ 3] {¬toad(x2), slimy(x2)} Premise 2
[ 4] {¬slimy(x3), muddy(x3)} Premise 3
[ 5] {¬muddy(c)} Res: 1, 2; θ = [x1/c]
[ 6] {¬slimy(x3), ¬toad(x3)} Res: 1, 4; θ = [x1/x3]
[ 7] {slimy(c)} Res: 2, 3; θ = [x2/c]
[ 8] {¬slimy(c)} Res: 2, 6; θ = [x3/c]
[ 9] {} Res: 7, 8
2) $Premise 1: ∀x ~ (big(x) → (muddy(x) ∨ slimy(x))) \\ Premise 2: ∀x ~ ((slimy(x) ∧ ∃y ~ greater(x, y)) → gobbles(x, x)) \\ Premise 3: ∀x ~ ((big(x) ∧ muddy(x)) → ∃y ~ (toad(y) ∧ gobbles(x, y))) \\ Conclusion: ∀x ~ ((big(x) ∧ greater(x, shrek)) → ∃z ~ gobbles(x, z))$
Intento:
Aparte de convertir la conclusión negada en la forma normal de la cláusula:
1. ∀x.((big(x) ∧ greater(x,shrek)) → ∃z.gobbles(x,z)) (Initial Conclusion)
2. ¬∀x.((big(x) ∧ greater(x,shrek)) → ∃z.gobbles(x,z)) (Negation)
3. ∃x.¬((big(x) ∧ greater(x,shrek)) → ∃z.gobbles(x,z)) (DeMorgan)
4. ∃x.¬(¬(big(x) ∧ greater(x,shrek)) ∨ ∃z.gobbles(x,z)) (Def. →)
5. ∃x.(¬¬(big(x) ∧ greater(x,shrek)) ∧ ¬∃z.gobbles(x,z)) (DeMorgan)
6. ∃x.(big(x) ∧ greater(x,shrek) ∧ ∀z.¬gobbles(x,z)) (Double Neg., DeMorgan)
7. big(c) ∧ greater(c,shrek) ∧ ∀z.¬gobbles(c,z) (Skolemization)
Además de convertir la premisa 1:
1. ∀x(big(x) → (muddy(x) ∨ slimy(x))) (Initial Premise 1)
2. ∀x(¬big(x) ∨ (muddy(x) ∨ slimy(x))) (Def. →)
3. ¬big(x2) ∨ (muddy(x2) ∨ slimy(x2)) (∀-elim)
Aparte de convertir la premisa 2:
1. ∀x.((slimy(x) ∧ ∃y.greater(x,y)) → gobbles(x,x)) (Initial Premise 2)
2. ∀x.(¬(slimy(x) ∧ ∃y.greater(x,y)) ∨ gobbles(x,x)) (Def. →)
3. ∀x.((¬slimy(x) ∧ ¬∃y.greater(x,y)) ∨ gobbles(x,x)) (DeMorgan)
4. ∀x.((¬slimy(x) ∧ ∀y.¬greater(x,y)) ∨ gobbles(x,x)) (DeMorgan)
5. ((¬slimy(x3) ∧ ¬greater(x3,y1)) ∨ gobbles(x3,x3)) (∀-elim)
Aparte de convertir la premisa 3:
1. ∀x.((big(x) ∧ muddy(x)) → ∃y.(toad(y) ∧ gobbles(x,y))) (Initial Premise 3)
2. ∀x.(¬(big(x) ∧ muddy(x)) ∨ ∃y.(toad(y) ∧ gobbles(x,y))) (Def. →)
3. ∀x.((¬big(x) ∨ ¬muddy(x)) ∨ ∃y.(toad(y) ∧ gobbles(x,y))) (DeMorgan)
4. ∀x.((¬big(x) ∨ ¬muddy(x)) ∨ (toad(f(y)) ∧ gobbles(x,f(y)))) (Skolemization)
5. ((¬big(x4) ∨ ¬muddy(x4)) ∨ (toad(f(y)) ∧ gobbles(x4,f(y)))) (∀-elim)
6. ((¬big(x4) ∨ ¬muddy(x4)) ∨ toad(f(y))) ∧ ((¬big(x4) ∨ ¬muddy(x4)) ∨ gobbles(x4,f(y))) (Distribution)
Prueba de resolución real:
[ 1] {big(c)} ∧-elim-1 Negated Conclusion, then ∧-elim-1 again
[ 2] {greater(c,shrek)} ∧-elim-1 Negated Conclusion, then ∧-elim-2
[ 3] {¬gobbles(c,x1)} ∧-elim-2 Negated Conclusion, ∀-elim
[ 4] {¬big(x2), muddy(x2), slimy(x2)} Premise 1
[ 5] {¬slimy(x3), ¬greater(x3,y1), gobbles(x3,x3)} Premise 2
[ 6] {¬big(x4), ¬muddy(x4), toad(f(y))} Premise 3a ∧-elim-1
[ 7] {¬big(x4), ¬muddy(x4), gobbles(x4,f(y))} Premise 3b ∧-elim-2
How to proceed?