El mejor método, por supuesto, es utilizar la separación de variables:
Dejemos que $u(x,t)=X(x)T(t)$ ,
Entonces $$X(x)T'(t)-x^2X''(x)T(t)-2xX'(x)T(t)=0$$
$$X(x)T'(t)=(x^2X''(x)+2xX'(x))T(t)$$
$$\dfrac{T'(t)}{T(t)}=\dfrac{x^2X''(x)+2xX'(x)}{X(x)}=-\dfrac{4\pi^2s^2+1}{4}$$
$$\begin{cases}\dfrac{T'(t)}{T(t)}=-\dfrac{4\pi^2s^2+1}{4}\\x^2X''(x)+2xX'(x)+\dfrac{4\pi^2s^2+1}{4}X(x)=0\end{cases}$$
$$\begin{cases}T(t)=c_3(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\\X(x)=\begin{cases}\dfrac{c_1(s)\sin(\pi s\ln x)}{\sqrt{x}}+\dfrac{c_2(s)\cos(\pi s\ln x)}{\sqrt{x}}&\text{when}~s\neq0\\\dfrac{c_1\ln x}{\sqrt{x}}+\dfrac{c_2}{\sqrt{x}}&\text{when}~s=0\end{cases}\end{cases}$$
$$\therefore u(x,t)=\dfrac{C_1e^{-\frac{t}{4}}\ln x}{\sqrt{x}}+\dfrac{C_2e^{-\frac{t}{4}}}{\sqrt{x}}+\sum_{s=0}^\infty\dfrac{C_3(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\sin(\pi s\ln x)}{\sqrt{x}}+\sum_{s=0}^\infty\dfrac{C_4(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\cos(\pi s\ln x)}{\sqrt{x}}$$
$u(1,t)=0$ :
$$C_2e^{-\frac{t}{4}}+\sum_{s=0}^\infty C_4(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}=0$$
$$\sum_{s=0}^\infty C_4(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}=-C_2e^{-\frac{t}{4}}$$
$$C_4(s)=\begin{cases}-C_2&\text{when}~s=0\\0&\text{otherwise}\end{cases}$$
$$\therefore u(x,t)=\dfrac{C_1e^{-\frac{t}{4}}\ln x}{\sqrt{x}}+\dfrac{C_2e^{-\frac{t}{4}}}{\sqrt{x}}+\sum_{s=0}^\infty\dfrac{C_3(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\sin(\pi s\ln x)}{\sqrt{x}}-\dfrac{C_2e^{-\frac{t}{4}}}{\sqrt{x}}=\dfrac{C_1e^{-\frac{t}{4}}\ln x}{\sqrt{x}}+\sum_{s=1}^\infty\dfrac{C_3(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\sin(\pi s\ln x)}{\sqrt{x}}$$
$u(e,t)=0$ :
$$\dfrac{C_1e^{-\frac{t}{4}}}{\sqrt{e}}=0$$
$$C_1=0$$
$$\therefore u(x,t)=\sum_{s=1}^\infty\dfrac{C_3(s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\sin(\pi s\ln x)}{\sqrt{x}}$$
$u(x,0)=u_0$ :
$$\sum_{s=1}^\infty\dfrac{C_3(s)\sin(\pi s\ln x)}{\sqrt{x}}=u_0$$
$$\sum_{s=1}^\infty C_3(s)\sin(\pi s\ln x)=u_0\sqrt{x}$$
$$\sum_{s=1}^\infty C_3(s)\sin(\pi xs)=u_0e^{\frac{x}{2}}$$
$$C_3(s)=2\int_0^1u_0e^{\frac{x}{2}}\sin(\pi sx)~dx=\left[\dfrac{2u_0e^{\frac{x}{2}}\left(\dfrac{1}{2}\sin(\pi sx)-\pi s\cos(\pi sx)\right)}{\dfrac{1}{4}+\pi^2s^2}\right]_0^1=\dfrac{8u_0\pi s(1-e^{\frac{1}{2}}(-1)^s)}{4\pi^2s^2+1}$$
$$\therefore u(x,t)=\sum_{s=1}^\infty\dfrac{8u_0\pi s(1-e^{\frac{1}{2}}(-1)^s)e^{-\frac{t(4\pi^2s^2+1)}{4}}\sin(\pi s\ln x)}{\sqrt{x}(4\pi^2s^2+1)}$$