$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\pi/2}\cos^{2011}\pars{x}\sin\pars{2013x}\,\dd x =
\Im\int_{0}^{\pi/2}\cos^{2011}\pars{x}\expo{2013x\ic}\,\dd x
\\[5mm] = &\
\left.\Im\int_{x = 0}^{x = \pi/2}\pars{z + 1/z \over 2}^{2011}z^{2013}
\,{\dd z \over \ic z}\,\right\vert_{\ z\ =\ \exp\pars{\ic x}}
\\[5mm] = &\
\left.-\,{1 \over 2^{2011}}\,\Re\int_{x = 0}^{x = \pi/2}\pars{1 + z^{2}}^{2011}
\,z\,\dd z\,\right\vert_{\ z\ =\ \exp\pars{\ic x}}
\\[5mm] = &\
{1 \over 2^{2011}}\,\Re\int_{1}^{0}\pars{1 - y^{2}}^{2011}
\pars{\ic y}\ic\,\dd y +
\,{1 \over 2^{2011}}\,\Re\int_{0}^{1}\pars{1 + x^{2}}^{2011}\ x\,\dd x
\\[5mm] = &\
{1 \over 2^{2012}}\int_{0}^{1}\pars{1 - y}^{2011}\,\dd y +
\,{1 \over 2^{2012}}\int_{0}^{1}\pars{1 + x}^{2011}\,\dd x
\\[5mm] = &\
{1 \over 2^{2012}}\,{1 \over 2012} +
{1 \over 2^{2012}}\,{2^{2012} - 1 \over 2012} =
\bbx{1 \over 2012}
\end{align}