Generalización :
Utilizando Teorema del Binomio ,
$$(1+x)^{2n}=1+\binom{2n}1x+\binom{2n}2x^2+\cdots+\binom{2n}{2n-1}x^{2n-1}+x^{2n}$$
$$\implies (1-x)^{2n}=1-\binom{2n}1x+\binom{2n}2x^2+\cdots-\binom{2n}{2n-1}x^{2n-1}+x^{2n}$$
$$\implies (1+x)^{2n}+(1-x)^{2n}=2\{1+\binom{2n}2x^2+\binom{2n}4x^4+\cdots+\binom{2n}{2n-2}x^{2n-2}+x^{2n}\}$$
$$\implies (1+x)^{2n}-(1-x)^{2n}=2\{\binom{2n}1x+\binom{2n}3x^3+\cdots+\binom{2n}{2n-3}x^{2n-3}+\binom{2n}{2n-1}x^{2n-1}\}$$
En la división, $$\frac{\sum_{0\le r\le n}\binom{2n}{2r}x^{2r}}{x\sum_{0\le r\le n-1}\binom{2n}{2r+1}x^{2r}}=\frac{(1+x)^{2n}+(1-x)^{2n}}{(1+x)^{2n}-(1-x)^{2n}}=\frac{1+\left(\frac{1-x}{1+x}\right)^{2n}}{1-\left(\frac{1-x}{1+x}\right)^{2n}}$$
Esto $\to 1$ cuando $n\to\infty$ si $-1<\frac{1-x}{1+x}<1$
Ahora, $-1<\frac{1-x}{1+x}\iff 0<\frac{1-x}{1+x}+1=\frac2{1+x}\iff 1+x>0\iff x>-1\ \ \ \ (1)$
$\frac{1-x}{1+x}<1\iff \frac{1-x}{1+x}-1<0\iff \frac{-2x}{1+x}<0$
$\iff x(x+1)>0$ multiplicando por $-\frac{(x+1)^2}2$ que es $<0$
$\implies $ o bien $(x>0$ y $x+1>0\iff x>-1)\implies x>0\ \ \ \ (2)$
o $(x<0$ y $x+1<0\iff x<-1)\implies x<-1$ que contradice $(1)$
Combinando $(1),(2)$ necesitamos $x>0$
Aquí $x=\sqrt2>0$