$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{{\rm F}\pars{z} \equiv
\int_{-\infty}^{\infty}{\expo{uz} \over 1 + \expo{u}}\,\dd u
= {\pi \\sin\pars{\pi z}}:\ {\Large ?}.\qquad z\ \en\ \pars{0,1}}$
Vamos a $\ds{\quad t \equiv {1 \over 1 + \expo{u}}\ \iff\ \expo{u} = {1 \over t} - 1\,,\ u = \ln\pars{1 - t} - \ln\pars{t}}$. Entonces
\begin{align}
\color{#00f}{\large{\rm F}\pars{z}}&=\int_{1}^{0}t\pars{1 - t \over t}^{z}\,
\pars{-\,{1 \over 1 - t} - {1 \over t}}\,\dd t
=\int_{0}^{1}t^{1 - z}\pars{1 - t}^{z - 1}\,\dd t
+ \int_{0}^{1}t^{-z}\pars{1 - t}^{z}\,\dd t
\\[3mm]&={\rm B}\pars{2 - z,z} + {\rm B}\pars{1 - z,z + 1}
={\Gamma\pars{2 - z}\Gamma\pars{z} \over \Gamma\pars{2}}
+ {\Gamma\pars{1 - z}\Gamma\pars{z + 1} \over \Gamma\pars{2}}
\\[3mm]&=\pars{1 - z}\Gamma\pars{1 - z}\Gamma\pars{z}
+\Gamma\pars{1 - z}z\Gamma\pars{z} = \Gamma\pars{z}\Gamma\pars{1 - z}
=\color{#00f}{\large{\pi\over \sin\pars{\pi z}}}
\end{align}
${\rm B}$ $\Gamma$ son de la Beta y Gamma funciones, respectivamente, y hemos utilizado las propiedades ya conocidas de ambos.