6 votos

Varianza que se calcula utilizando series de Taylor no está de acuerdo con experimento numérico

Me gustaría estimar un ángulo de $\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ dado el ruido de las observaciones de su seno y coseno (esto está relacionado con mi pregunta anterior). Mi estimador es la tangente inversa de la relación de los medios de las observaciones de seno y coseno. Vamos a suponer que el ruido es aditivo y Gaussiano. Estoy teniendo problemas para mostrar que el error cuadrático medio (MSE) de este estimador es la disminución en $n$, a pesar de experimentos numéricos (e intuición) sugieren que sí.

Formalmente, supongamos secuencias independientes de yo.yo.d. cero significa aleatoria Gaussiana variables $(X_n)$ $(Y_n)$ tienen varianza que es inversamente proporcional a $n$. Que es $X_n\sim\mathcal{N}\left(0,\frac{\sigma^2}{n}\right)$, $Y_n\sim\mathcal{N}\left(0,\frac{\sigma^2}{n}\right)$, y el conjunto p.d.f. es:

$$f_{X_n,Y_n}(x_n,y_n)=\frac{n}{2\pi\sigma^2}\exp\left[-\frac{(x_n^2+y_n^2)n}{2\sigma^2}\right].$$

I am interested in the mean squared error of the estimator $\hat{\theta}(X_n,Y_n)=\tan^{-1}\left(\frac{\sin(\theta)+X_n}{\cos(\theta)+Y_n}\right)$ as $n\rightarrow\infty$. Specifically, I would like to show that:

$$\lim_{n\rightarrow\infty}\mathbb{E}_{X_n,Y_n}[(\hat{\theta}(X_n,Y_n)-\theta)^2]=\lim_{n\rightarrow\infty}\mathbb{E}_{X_n,Y_n}\left[\left(\tan^{-1}\left(\frac{\sin(\theta)+X_n}{\cos(\theta)+Y_n}\right)-\theta\right)^2\right]=0.$$

Furthermore, I would like to show that $\mathbb{E}_{X_n,Y_n}[(\hat{\theta}(X_n,Y_n)-\theta)^2]=\mathcal{O}\left(\frac{1}{n}\right)$.

I performed a numerical experiment in MATLAB (see code below), which suggests the inverse linear scaling of the MSE:

enter image description here

I then tried to confirm it analytically using the Taylor series expansion of the function $\tan^{-1}\left(\frac{\sin(\theta)+X_n}{\cos(\theta)+Y_n}\right)$ at the origin $(x,y)=(0,0)$. However, utmost care in the control of the remainder must be exercised when taking the expectation of Taylor expansion--see this discussion (in particular, Mike McCoy's answer). With that in mind, I use Wolfram Mathematica (see code below) I obtain:

$$\begin{align}&\tan^{-1}\left(\frac{\sin(\theta)+x}{\cos(\theta)+y}\right) =\theta+x \cos (\theta )-y \sin (\theta )\\ &\qquad+\frac{1}{2} \left[\sin (2 \theta ) \left(y^2-x^2\right)-2 x y \cos (2 \theta )\right] \\ &\qquad+\frac{1}{3} \left[-y \sin (3 \theta ) \left(y^2-3 x^2\right)-x \cos (3 \theta ) \left(x^2-3 y^2\right)\right] \\ &\qquad+\frac{1}{4} \left[\sin (4 \theta ) \left(x^4-6 x^2 y^2+y^4\right)+4 x y \cos (4 \theta ) \left(x^2-y^2\right)\right]\\ &\qquad+\frac{1}{5} \left[-y \sin (5 \theta ) \left(5 x^4-10 x^2 y^2+y^4\right)+x \cos (5 \theta ) \left(x^4-10 x^2 y^2+5 y^4\right)\right]\\ &\qquad+\frac{1}{6} \left[-\sin (6 \theta ) \left(x^6-15 x^4 y^2+15 x^2 y^4-y^6\right)\right. \\ &\qquad\qquad\qquad\left.+\cos (6 \theta ) \left(-\left(6 x^5 y-20 x^3 y^3+6 x y^5\right)\right)\right] \\ &\qquad+\frac{1}{7}\left[-y \sin (7 \theta ) \left(-7 x^6+35 x^4 y^2-21 x^2 y^4+y^6\right)\right. \\ &\qquad\qquad\qquad\left.-x \cos(7 \theta ) \left(x^6-21 x^4 y^2+35 x^2 y^4-7 y^6\right)\right]\\ &\qquad+\ldots\end{align}$$

The zeroth-order term is of course $\theta$. If we just plug $X_n$ and $Y_n$ into the first order term $x \cos (\theta )-y \sin (\theta )$ and compute the variance, we get the desired inverse dependence on $n$. However, per Mike McCoy's answer to the aforementioned post, I need to ensure that the error from the remainder $R_2(X_n,Y_n;\theta)$ after the first order term goes to zero as well, where the remainder is defined as follows:

$$R_2(x,y)=\tan^{-1}\left(\frac{\sin(\theta)+x}{\cos(\theta)+y}\right)-\theta-x \cos (\theta )+y \sin (\theta ).$$

Remainder is an arithmetic mess, however, subtracting $\theta$ from the Taylor series expansion above, squaring, plugging in $X_n$ and $Y_n$, and finding expected value by integrating in Mathematica (see code below) yields:

$$\mathbb{E}_{X_n,Y_n}[(\hat{\theta}(X_n,Y_n)-\theta)^2]=\left(\frac{\sigma^2}{n}\right)+\left(\frac{\sigma^2}{n}\right)^2+\frac{8}{3} \left(\frac{\sigma^2}{n}\right)^3+12 \left(\frac{\sigma^2}{n}\right)^4+\frac{384}{5}\left(\frac{\sigma^2}{n}\right)^5+640 \left(\frac{\sigma^2}{n}\right)^6+\frac{46080}{7} \left(\frac{\sigma^2}{n}\right)^7+80640 \left(\frac{\sigma^2}{n}\right)^8+\ldots$$

From these first few terms one recognizes the following series:

$$\mathbb{E}_{X_n,Y_n}[(\hat{\theta}(X_n,Y_n)-\theta)^2]=\sum_{p=1}^\infty\frac{2^pp!\sigma^{2p}}{pn^p},$$

which diverges for any fixed $n$ (and $\sigma^2$), lo que implica que el MSE es infinito.

¿Qué estoy haciendo mal? ¿Hay alguna otra manera de mostrar que el MSE converge a cero?


CÓDIGO

Este es el código de MATLAB utilizados en la generación de la figura:

for n=1:100
  x=randn(1,1000)/sqrt(n*10);
  y=randn(1,1000)/sqrt(n*10);
  v(n)=var(atan((sin(theta)+x)./(cos(theta)+y)));
end

Este es el código de Mathematica para obtener los siete primeros términos de la expansión en series de Taylor:

Sum[FullSimplify[
 D[ArcTan[(Sin[\[Theta]] + t*x)/(Cos[\[Theta]] + t*y)], {t, i}] /. 
 t -> 0, Assumptions -> \[Theta] > -Pi/2 && \[Theta] < 
  Pi/2]/(i!), {i, 0, 7}]

y aquí está el código que se usa primero el MSE para el primer par de términos:

Integrate[(Out[2] - \[Theta])^2/(2*Pi*s2)*
  Exp[-(x^2 + y^2)/(2*s2)], {x, -Infinity, Infinity}, {y, -Infinity, 
  Infinity}, 
 Assumptions -> \[Theta] > -Pi/2 && \[Theta] < Pi/2 && s2 > 0]

3voto

jldugger Puntos 7490

No importa que si el error cuadrático medio es decreciente con $n$. Todo lo que importa es que puede hacerse arbitrariamente pequeña. Aquí es una simple demostración.

La fijación de $\theta$, vamos a $s=\sin(\theta)$$c=\cos(\theta)$. El estimador $\hat\theta$ es la pendiente de el rayo que pasa por el origen y el punto de

$$(c + Y_n, s+X_n).$$

Deje $\epsilon \gt 0$. Considere el disco de radio $\sin\delta$$(c,s)$. La geometría euclidiana nos muestra este disco está contenida dentro de la cuña en el origen con ángulos $\theta-\delta$$\theta+\delta$. Eligiendo $n$ suficientemente grande, la probabilidad de que $(c+Y_n, s+X_n)$ se encuentra dentro de ese disco puede ser que supere $1-\alpha$ para cualquier pequeño $\alpha$. De hecho, debido a $n(X_n^2 + Y_n^2)$ sigue una $\chi^2_2$ distribución,

$$n = \lceil\frac{(\chi^2_2)^{-1}(1-\alpha)}{(\sin\delta)^2}\rceil$$

va a trabajar.

Figure

En este boceto, $(c,s)$ está en el punto rojo, el disco se dibuja en negro, la cuña en color azul, y 10.000 valores simulados de $(c+Y_n, s+X_n)$ se muestran. $\epsilon$ fue igual a $1/50$ aquí, correspondiente a la media de la raíz del error en la estimación de la pendiente de no más de $\sqrt{1/50}\approx 0.14$. Con $\alpha=0.05$, el valor de $n$$300$, que corresponde a una desviación estándar de $\sqrt{1/300} \approx 0.058$ en cada una de las coordenadas de la simulación puntos.

Ahora, dentro de ese disco el error angular no exceda el $\delta$ y fuera de ese disco el error angular no puede exceder $\pi$ bajo cualquier circunstancia (ya que la tangente inversa siempre produce valores en el rango de $[-\pi/2, \pi/2]$). Esta límites a la espera del error cuadrado:

$$\mathbb{E}([\hat\theta - \theta]^2) \le (1-\alpha)(\sin(\delta))^2 + \alpha \pi^2.$$

Por la elección de, digamos, $\delta = \arcsin{\sqrt{\epsilon}}$$\alpha=\epsilon/\pi^2$, el lado derecho será menor que $2\epsilon$. Debido a $\epsilon \gt 0$ fue arbitraria, la limitación de los cuadrados medios del error es cero.

(En la figura, el error cuadrático medio se $0.0033 \ll 0.04 = 2\epsilon$.)


El argumento de error angular en el disco supone la tangente inversa fue continua dentro de un barrio de $\theta$. Ese no será el caso para $\theta=\pm \pi/2$, pero un ligero cambio en la definición de la tangente inversa en los casos donde $\theta$ está cerca de estos valores va a solucionar el problema.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X