5 votos

Suma de una serie binomial

Considerar la siguiente suma:

$$S(n)=\sum_{k=0}^{\infty}\frac{\binom{2k+n}{k}}{2k+n}\frac{1}{2^{2k}};n=0,1,2,3,...$$ Is there a closed form for $S(n)$?

4voto

Robert Christie Puntos 7323

La suma en la mano es una de la serie hipergeométrica. Vamos $$ c_k = \frac{1}{n+2k} \binom{n+2k}{k} \frac{1}{2^{2k}} = \frac{(n-1+2k)!}{k! (n+k)!} \frac{1}{4^k} $$ De hecho, la hipergeométrica certificado es: $$ \frac{c_{k+1}}{c_k} = \frac{1}{4} \frac{(n+2k)(n+2k+1)}{(n+1+k) (k+1)} $$ Lo que significa que $$ \sum_{k=0}^\infty c_k = c_0 \sum_{k=0}^\infty \frac{\left(n/2\right)_k \left(n/2+1/2\right)_k}{(n+1)_k} \frac{1}{k!} = \frac{1}{n} \cdot {}_2 F_1 \left(\frac{n}{2}, \frac{n+1}{2} ; n+1 ; 1 \right) $$ donde $(a)_k$ denota el símbolo de Pochhammer. El uso del teorema de Gauss, aplicable para $\Re(c-a-b)>0$ $$ {}_2 F_{1} \left(a,b; c; 1\right) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} $$ tenemos $$ \sum_{k=0}^\infty c_k = \frac{1}{n} \frac{ \Gamma(n+1) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2} + 1 \right) \Gamma\left(\frac{n+1}{2} \right) } \stackrel{\text{duplicación}}{=} \frac{1}{n} \frac{ 2^{n} \pi^{-1/2} \Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2} \right) \Gamma\left(\frac{n+1}{2} \right) } = \frac{2^n}{n} $$ Desde $\Gamma(1/2) = \sqrt{\pi}$

4voto

pedja Puntos 7773

Según arce forma cerrada de $S(n)$ es:

$$\frac{2^n}{n}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X