¿Por qué una de las primeras 100.000 ceros de la de Riemann Zeta función de doble dígito en la secuencia de conteo de discontinuidades en 00,11,22,33,44,55,66,77,88,99?
Yo estaba investigando la Ley de Benford tipo de comportamientos y fue la ejecución de algunos de los análisis en la página web "Andrew Odlyzko: Tablas de ceros de la de Riemann zeta función de" ... más específicamente de las primeras 100.000 ceros. La página web es el Primer 100k ceros de Riemann Zeta función y simplemente he realizado una web de búsqueda del navegador para cada uno de los 100 de dos secuencias de dígitos desde 00 a 99.
Lo que me encontré fue la siguiente:
Entiendo por qué el "01" a través de "09" es en general baja, desde ceros a la izquierda no aparecen. Yo también entiendo que la discontinuidad de 74 a 75 desde las primeras 100.000 ceros lista sólo llega hasta 74921.
Pero ¿por qué son múltiplos de once incrementalmente menos frecuentes que los de sus cercanos secuencias de dígitos.
Di cuenta de que
C("01") es mayor que C("00"),
C("10") y C("12") son mayores que C("11"),
C("21") y C("23") son mayores que C("22"), etcétera,
continuando en la
C("98") es mayor que C("99").
Parece curioso para mí.
Cualquier visión aquí se aprecia.