El conjunto de $F_{n}$ de símbolos de función primitiva recursiva de % arty $n$puede definirse inductivamente como\begin{array}[lr] & Z, \text{Succ} \in F_{1} & \\ \pi_{j}^{n} \in F_{n} \quad \text{for each} \quad j=1,\dots, n \\ &\text{if} \quad f \in F_{n} \quad \text{and} g_{1},\dots, g_{n} \in F_{m}, \text{then} \circ_{n}^{m}[f,g_{1},\dots,g_{n}]\in F_{m} & \\ &\text{if} \quad f \in F_{n+2} \quad \text{and} \quad g \in F_{n}, \text{then} \quad \text{Rec}^{n}[f,g]\in F_{n} & \end{matriz} dada la interpretación %#%, $f \in F_{n}$-#% \begin{array}[lr] [[Z]](k)&=& 0 \\ [[\text{Succ}]](k) &= &k+1 \\ [[\pi_{j}^{n}]](k_{1},\dots,k_{n}) &= &k_{j} \\ [[\circ_{n}^{m}[f,g_{1},\dots,g_{n}]]](k_{1},\dots,k_{m}) &= &[[f]]([[g_{1}]](k_{1},\dots,k_{m}),\dots, [[g_{n}]](k_{1},\dots, k_{m})) \\ [[\text{Rec}^{n}[f,g]]](k_{1},\dots,k_{n},0) &= & [[g]](k_{1},\dots,k_{n}) \\ [[\text{Rec}^{n}[f,g]]](k_{1},\dots,k_{n},m+1) &= & [[f]](k_{1},\dots,k_{n},m,[[\text{Rec}^{n}[f,g]]](k_{1},\dots,k_{n},m) \end{matriz}
encontrar funciones $[[f]]:\mathbb{N}^{n} \to \mathbb{N}$ que $A,B \in F_{2}$ y $[[A]](x,y)=xy$.
Nota $[[B]](x,y)=x^{y}$, $[[0]]=0$ y $[[S(a)]]=[[a]]+1$ $[[f(a_{1},\dots,a_{n})]]=[[f]]([[a_{1}]],\dots,[[a_{n}]])$