5 votos

Una serie infinita de un producto de tres logaritmos

Hoy me han hecho esta interesante pregunta, pero no he conseguido llegar muy lejos:

Evaluar $$\sum_{n=1}^\infty \log \left(1+\frac{1}{n}\right)\log \left(1+\frac{1}{2n}\right)\log \left(1+\frac{1}{2n+1}\right).$$

Me interesa ver al menos algunas soluciones.

7voto

Eric Naslund Puntos 50150

Aquí hay una solución que acabo de encontrar. Observe que $$\log\left(1+\frac{1}{2n+1}\right)=\log\left(1+\frac{1}{n}\right)-\log\left(1+\frac{1}{2n}\right)$$ por lo que nuestra serie se convierte en $$\sum_{n=1}^{\infty}\left(\log\left(1+\frac{1}{n}\right)^{2}\log\left(1+\frac{1}{2n}\right)-\log\left(1+\frac{1}{n}\right)\log\left(1+\frac{1}{2n}\right)^{2}\right).$$ Desde $$\log\left(1+\frac{1}{2n+1}\right)^{3}=\log\left(1+\frac{1}{n}\right)^{3}-3\log\left(1+\frac{1}{n}\right)^{2}\log\left(1+\frac{1}{2n}\right)+3\log\left(1+\frac{1}{n}\right)\log\left(1+\frac{1}{2n}\right)^{2}-\log\left(1+\frac{1}{2n}\right)^{3},$$ vemos que nuestra serie es igual a $$\frac{1}{3}\left(\sum_{n=1}^{\infty}\log\left(1+\frac{1}{n}\right)^{3}-\log\left(1+\frac{1}{2n}\right)^{3}-\log\left(1+\frac{1}{2n+1}\right)^{3}\right),$$ y los telescopios anteriores e iguales $$\frac{\left(\log2\right)^{3}}{3}.$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X