Su descripción es correcta: dado que \$V_{GS}>V_T\$, si aplicamos un voltaje de Drenaje a Fuente de magnitud \$V_{SAT}=V_{GS}-V_{T}\$ o superior, el canal se estrangulará.
Voy a tratar de explicar lo que sucede allí. Estoy asumiendo un MOSFET de tipo n en los ejemplos, pero las explicaciones también son válidas para MOSFET de tipo p (con algunos ajustes, por supuesto).
La razón del estrangulamiento:
Piensa en el potencial eléctrico a lo largo del canal: es igual a \$V_S\$ cerca de la Fuente; es igual a \$V_D\$ cerca del Drenaje. Recuerda también que la función de potencial es continua. La conclusión inmediata de las dos afirmaciones anteriores es que el potencial cambia continuamente desde \$V_S\$ hasta \$V_D\$ a lo largo del canal (permíteme ser no formal y utilizar los términos "potencial" y "voltaje" indistintamente).
Ahora, veamos cómo la conclusión anterior afecta la carga en la capa de inversión. Recuerda que esta carga se acumula bajo la Compuerta debido al voltaje de Compuerta a Sustrato (sí, Sustrato, no Fuente. La razón por la que usualmente usamos \$V_{GS}\$ en nuestros cálculos es porque asumimos que el Sustrato y la Fuente están conectados al mismo potencial). Ahora, si el potencial cambia a lo largo del canal cuando aplicamos \$V_{DS}\$, el voltaje de Compuerta a Sustrato también cambiará a lo largo del canal, lo que significa que la densidad de carga inducida variará a lo largo del canal.
Cuando aplicamos \$V_{SAT}=V_{GS}-V_{T}\$ al Drenaje, el voltaje efectivo de Compuerta a Sustrato cerca del Drenaje será: \$V_{eff}=V_{GS}-V_{SAT}=V_T\$. Significa que cerca del Drenaje el voltaje de Compuerta a Sustrato es justo suficiente para formar la capa de inversión. Cualquier potencial más alto aplicado al Drenaje hará que este voltaje disminuya por debajo del voltaje Umbral y el canal no se formará - ocurre el estrangulamiento.
Lo que sucede entre el punto de estrangulamiento y el Drenaje:
El voltaje de Compuerta a Sustrato en esta región no es suficiente para la formación de la capa de inversión, por lo tanto esta región solo está agotada (a diferencia de invertida). Mientras que la región de agotamiento carece de portadores móviles, no hay restricción en el flujo de corriente a través de ella: si un portador entra en la región de agotamiento desde un lado, y hay un campo eléctrico a través de la región, este portador será arrastrado por el campo. Además, los portadores que ingresan a esta región de agotamiento tienen cierta velocidad inicial.
Todo lo anterior es cierto siempre y cuando los portadores en cuestión no se recombinen en la región de agotamiento. En un MOSFET de tipo n la región de agotamiento carece de portadores de tipo p, pero la corriente consiste en portadores de tipo n, lo que significa que la probabilidad de recombinación de estos portadores es muy baja (y puede ser despreciada para cualquier propósito práctico).
Conclusión: los portadores de carga que ingresan a esta región de agotamiento serán acelerados por el campo a través de esta región y eventualmente llegarán al Drenaje. Normalmente, la resistividad de esta región puede ser completamente despreciada (la razón física de esto es bastante compleja - esta discusión es más apropiada para un foro de física).
Espero que esto ayude