Considere los tres $n$-números de dos dígitos
\begin{align}
a &= 16\ldots6 = \tfrac16 (10^n - 4), \\
b &= 50\ldots0 = \tfrac12 10^n, \\
c &= 33\ldots3 = \tfrac13 (10^n - 1). \\
\end{align}
Entonces
\begin{align}
a^3 + b^3 + c^3 &= \frac{1}{6^3} (10^n - 4)^3
+ \frac{1}{2^3} (10^n)^3 + \frac{1}{3^3} (10^n - 1)^3.
\end{align}
Trabajando fuera de los términos principales en el lado derecho,
\begin{align}
\frac{1}{6^3} (10^n - 4)^3
&= \frac1{6^3}(10^{3n} - 3\cdot4\cdot 10^{2n}
+ 3\cdot4^2\cdot 10^n - 4^3) \\
&= \frac{1}{216}10^{3n} - \frac{1}{18}10^{2n}
+ \frac{2}{9}10^n - \frac{8}{27}, \\[.7ex]
\frac{1}{3^3} (10^n - 1)^3
&= \frac1{3^3}(10^{3n} - 3\cdot 10^{2n} + 3\cdot 10^n - 1) \\
&= \frac{1}{27}10^{3n} - \frac{1}{9}10^{2n}
+ \frac{1}{9}10^n - \frac{1}{27}, \\[.7ex]
\frac{1}{6^3} (10^n - 4)^3 + \frac{1}{3^3} (10^n - 1)^3
&= \left(\frac{1}{216} + \frac{1}{27}\right)10^{3n}
- \left(\frac{1}{18} + \frac{1}{9}\right)10^{2n} \\
& \qquad + \left(\frac{2}{9} + \frac{1}{9}\right)10^n
- \left(\frac{8}{27} + \frac{1}{27}\right) \\
&= \frac{1}{24} 10^{3n} - \frac{1}{6} 10^{2n}
+ \frac{1}{3}10^n - \frac{1}{3}, \\[.7ex]
\frac{1}{2^3} (10^n)^3 &= \frac{1}{8} 10^{3n}.
\end{align}
Entonces, desde el $\frac{1}{24} + \frac{1}{8} = \frac{1}{6}$,
\begin{align}
a^3 + b^3 + c^3
&= \frac1{6^3} (10^n - 4)^3
+ \frac1{2^3} (10^n)^3 + \frac1{3^3} (10^n - 1)^3 \\
&= \frac16 10^{3n} - \frac16 10^{2n} + \frac13 10^n - \frac13.
\end{align}
Pero
$$\frac16 10^{3n}
= \overbrace{16\ldots6}^{\text{$3n$ dígitos}}.666\ldots.$$
Restar
$$\frac16 10^{2n}
= \overbrace{16\ldots6}^{\text{$2n$ dígitos}}.666\ldots$$
y el resultado es
$$\frac16 10^{3n} - \frac16 10^{2n}
= \overbrace{16\ldots6}^{\text{$n$ dígitos}}\overbrace{50\ldots0}^{\text{$2n$ dígitos}}.$$
Continuando,
\begin{align}
\frac13 10^n &= \overbrace{33\ldots3}^{\text{%#%#% digits}}.333\ldots, \\
\frac13 &= \phantom{33\ldots{}}0.333\ldots, \\
\frac13 10^n - \frac13 &= \overbrace{33\ldots3}^{\text{%#%#% digits}}, \\
\frac16 10^{3n} - \frac16 10^{2n} + \frac13 10^n - \frac13
&= \overbrace{16\ldots6}^{\text{%#%#% digits}}\overbrace{50\ldots000\ldots0}^{\text{%#%#% digits}} \\
& \phantom{=} + \phantom{6\ldots650\ldots0} \overbrace{33\ldots3}^{\text{%#%#% digits}} \\[1ex]
&= \overbrace{16\ldots6}^{\text{%#%#% digits}}\overbrace{50\ldots0}^{\text{%#%#% digits}}\overbrace{33\ldots3}^{\text{%#%#% digits}}.
\end{align}