Hay otra interesante manera de probar que $f$ está acotada. Primero de todo, una importante pre-requisito:
Si $g(x)$ es una potencia de la serie y derivados de todo orden de $g$ existir en algún $r\in R$, es decir, $g^{(0)}(x), g^{(1)}(x),...$ convergen en $r$,$g(x)=\sum_{n=0}^{\infty}g^{(n)}(r)\frac{(x-r)^n}{n!} \ \forall \ x \in \mathbb R$. La prueba es un maravilloso ejercicio en la notación de sumatoria.
Prueba: Decir $g(x)=\sum_{n=0}^{\infty}b_nx^n$. Entonces $$\sum_{n=0}^{\infty}g^{(n)}(r)\frac{(x-r)^n}{n!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}\frac{(k+n)!}{k!}b_{k+n}r^k\right)\frac{(x-r)^n}{n!}$$ $$ = \sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\frac{(k+n)!}{(k!)(n!)}b_{k+n}r^{k}\left(\sum_{m=0}^n{n \choose m}(-1)^{(n-m)}r^{(n-m)}x^m\right) $$ $$ \sum_{n=0}^{\infty}\sum_{k=0}^{\infty} \sum_{m=0}^{n} {{k+n}\choose k}{n \choose m}b_{k+n}(-1)^{(n-m)}r^{(k+n-m)}x^m$$You can sum over $m$ in the end, i.e. $$\sum_{m=0}^{\infty}\left( \sum_{n=m}^{\infty} \sum_{k=0}^{\infty} {{k+n}\choose k}{n \choose m}b_{k+n}(-1)^{(n-m)}r^{(k+n-m)} \right)x^m$$ Now take $j=n+k$ and see that for given $n$, $j$ goes from $n$ to $\infty$, so that the sum becomes $$\sum_{m=0}^{\infty}\left( \sum_{n=m}^{\infty} \sum_{j=n}^{\infty} {{j}\choose n}{n \choose m}b_{j}(-1)^{(n-m)}r^{(j-m)} \right)x^m $$ Now the final part: we can interchange the two inner summations of $j$ and $n$. Notice that $j\ge n \ge m$, de modo que la suma se convierte en
$$ \sum_{m=0}^{\infty}\left( \sum_{j=m}^{\infty} \sum_{n=m}^{j} {{j}\choose n}{n \choose m}b_{j}(-1)^{(n-m)}r^{(j-m)} \right)x^m $$
$$ \sum_{m=0}^{\infty}\left( \sum_{j=m}^{\infty} \left( \sum_{n=m}^{j} {{j}\choose n}{n \choose m} (-1)^{(n-m)} \right) b_{j}r^{(j-m)} \right)x^m $$We have considerably resolved this summation. We only need to show that the terms for $j>m$ desaparecer.
Para ver este aviso $$(1+x)^j=\sum_{p=0}^j{j\choose p}x^{(j-p)}$$ and $$(1+x)^{-(m+1)}=\sum_{q=m}^{\infty}{q\choose m}(-1)^{(q-m)}x^{(q-m)}$$ and that the expression $\sum_{n=m}^{j} {{j}\elegir n}{n \elegir m} (-1)^{(n-m)}$ is nothing but the coefficient of $x^{(j-m)}$ in $(1+x)^j (1+x)^{-(m+1)}$, i.e. the coefficient of $x^{(j-m)}$ in $(1+x)^{(j-m-1)}$. If $j=m$ this is equal to one. However if $j>m$ then $j-m-1\ge 0$ and thus coefficient is equal to zero. Thus $$ \sum_{n=m}^{j} {{j}\choose n}{n \choose m} (-1)^{(n-m)} = \delta_{jm}$$. Therefore the summation becomes $$ \sum_{m=0}^{\infty} b_{m}r^{(m-m)} x^m = g(x)$$ como se requiere.
Ahora considere el poder de la serie de $h(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}f(n)$. Observe que $$h^{(k)}(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}f(n+k) \ \forall \ k\ge0$$It follows that $h^{(k)}(x)$ converges at $x=t \ forall \ k\ge0$ and $h^{(k)}(t)=\sum_{n=0}^{\infty}\frac{t^n}{n!}f(n+k)$. Thus $h(x)=\sum_{n=0}^{\infty}h^{(n)}(t)\frac{(x-t)^n}{n!}$. Now notice that $ |h^{(k)}(t) \frac{(x-t)^k}{k!}| < A \frac{|x-t|^k}{k!} \ \forall \ k\ge0$ and since $\sum_{n=0}^{\infty}\frac{|x-t|^n}{n!}$ converges everywhere in $\mathbb R$, it follows from Weierstrass-M test that the series $\sum_{n=0}^{\infty}h^{(n)}(t)\frac{(x-t)^n}{n!}$ converges everywhere in $\mathbb R$. Thus $h(x)$ converges everywhere in $\mathbb R$. Also $|h(x)| < A \left( \sum_{n=0}^{\infty}\frac{|x-t|^n}{n!} \right)=Ae^{|x-t|}$.
Del mismo modo, mediante la diferenciación de $h(x)= \sum_{n=0}^{\infty}h^{(n)}(t) \frac{(x-t)^n}{n!}$usted puede demostrar que $$h^{(k)}(x)=\sum_{n=0}^{\infty}h^{(k+n)}(t)\frac{(x-t)^n}{n!}$$ $\forall \ k \ge 0$. Again it follows from Weierstrass-M test that $h^{(k)}(x)$ converges everywhere in $\mathbb R$ and $$|h^{(k)}(x)|= \left| \sum_{n=0}^{\infty}h^{(k+n)}(t)\frac{(x-t)^n}{n!} \right| < A \left( \sum_{n=0}^{\infty} \frac{|x-t|^n}{n!} \right) = Ae^{|x-t|}$$. Así
$$|h(0)|=|f(0)| < Ae^{|0-t)|}=Ae^{t}...$$
$$|h^{(k)}(0)| = |f(k)| < Ae^{|0-t|} = Ae^{t} \ \forall \ k \ge 0$$ proving that $f$ es acotada.