$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \int_{0}^{\pi/2}\braces{\cot\pars{x}}\dd x & = \int_{0}^{\pi/2}\braces{\tan\pars{x}}\dd x \,\,\,\stackrel{\tan\pars{x}\ \mapsto\ x}{=}\,\,\, \int_{0}^{\infty}{\braces{x} \over x^{2} + 1}\,\dd x \\[5mm] &= \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \int_{0}^{\Lambda}{\left\lfloor\,{x}\,\right\rfloor \over x^{2} + 1}\,\dd x} \\[5mm] & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \int_{0}^{\left\lfloor\,\Lambda\,\right\rfloor} {\left\lfloor\,{x}\,\right\rfloor \over x^{2} + 1}\,\dd x - \int_{\left\lfloor\,\Lambda\,\right\rfloor}^{\Lambda} {\left\lfloor\,{x}\,\right\rfloor \over x^{2} + 1}\,\dd x} \end{align}
Tenga en cuenta que $\ds{\lim_{\Lambda \to \infty}\int_{\left\lfloor\,\Lambda\,\right\rfloor}^{\Lambda} {\left\lfloor\,{x}\,\right\rfloor \over x^{2} + 1}\,\dd x = 0}$ .
Entonces, \begin{align} \int_{0}^{\pi/2}\braces{\cot\pars{x}}\dd x & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor - 1} \int_{n}^{n + 1}{n \over x^{2} + 1}\,\dd x} \\[5mm] & = \lim_{\Lambda \to \infty}\braces{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor - 1} n\bracks{\arctan\pars{n + 1} - \arctan\pars{n}}} \\[5mm] & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor} \pars{n - 1}\arctan\pars{n} + \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor - 1}n\arctan\pars{n}} \\[5mm] & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \left\lfloor\,\Lambda\,\right\rfloor \arctan\pars{\left\lfloor\,\Lambda\,\right\rfloor} + \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor}\arctan\pars{n}} \\[5mm] & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} - \left\lfloor\,\Lambda\,\right\rfloor \arctan\pars{\left\lfloor\,\Lambda\,\right\rfloor} + {\pi \over 2}\,\left\lfloor\,\Lambda\,\right\rfloor - \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor}\arctan\pars{1 \over n}} \\[5mm] & = \lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} + \left\lfloor\,\Lambda\,\right\rfloor \arctan\pars{1 \over \left\lfloor\,\Lambda\,\right\rfloor} - \sum_{n = 1}^{\left\lfloor\,\Lambda\,\right\rfloor}\arctan\pars{1 \over n}} \\[1cm] & =\ \underbrace{\overbrace{\quad\lim_{\Lambda \to \infty}\bracks{% {1 \over 2}\ln\pars{\Lambda^{2} + 1} + \left\lfloor\,\Lambda\,\right\rfloor \arctan\pars{1 \over \left\lfloor\,\Lambda\,\right\rfloor} - H_{\left\lfloor\,\Lambda\,\right\rfloor}}\quad}^{\ds{=\ 1 - \gamma}}} _{\ds{~H_{z}:\ Harmonic\ Number.\ \gamma:\ Euler-Mascheroni\ Constant~}} \\[2mm] & + \sum_{n = 1}^{\infty}\bracks{{1 \over n} - \arctan\pars{1 \over n}} \end{align}
Por lo tanto, la pregunta original se reduce a
\begin{align} \bbx{\int_{0}^{\pi/2}\braces{\cot\pars{x}}\dd x = 1 - \gamma + \sum_{n = 0}^{\infty}\bracks{{1 \over n + 1} - \arctan\pars{1 \over n + 1}}} \label{1}\tag{1} \end{align} La suma "restante" es una identidad ( véase $\ds{\mathbf{\color{#000}{6.1.27}}}$ en Mesa A & S ). A saber, $$ \sum_{n = 0}^{\infty}\bracks{{1 \over n + 1} - \arctan\pars{1 \over n + 1}} = \mrm{arg}\pars{\Gamma\pars{1 + \ic}} + \gamma $$ $$ \mbox{such that}\quad \bbox[15px,#ffe,border:1px dotted navy]{\ds{\int_{0}^{\pi/2}\braces{\cot\pars{x}}\dd x = 1 + \mrm{arg}\pars{\Gamma\pars{1 + \ic}}}} \approx 0.6984 $$
2 votos
Para tu información, esto no es "cálculo fraccionario". He eliminado esa etiqueta.
0 votos
Este es un problema en el último de "La Gaceta de la RSME"
0 votos
@Theta33 ¡Sí! ¡Tienes razón!
0 votos
Sólo para hacer el mismo comentario que Theta33. Este problema es un problema en el último de La Gaceta de la Real Sociedad Matemática Española.