6 votos

Encuentre el valor de$\,\, \lim_{n \to \infty}\Big(\!\big(1+\frac{1}{n}\big)\big(1+\frac{2}{n}\big) \cdots\big(1+\frac{n}{n}\big)\!\Big)^{\!1/n} $

Cuál es el límite de:

¿$$ \lim_{n \to \infty}\bigg(\Big(1+\frac{1}{n}\Big)\Big(1+\frac{2}{n}\Big) \cdots\Big(1+\frac{n}{n}\Big)\bigg) ^ {1/n}? $$

Por la computadora, supongo que el límite es igual a $\dfrac{4}{e}$, pero no tengo ni idea sobre demostrando.

Gracias por su ayuda.

10voto

Samrat Mukhopadhyay Puntos 11677

Que $f(n)=[\prod_{i=0}^n (1+r/n)]^{1/n}$, $\ln f(n)=1/n\sum_{r=0}^n\ln (1+r/n)\Rightarrow \lim_{n\to \infty}\ln f(n)=\int_{0}^1 \ln (x+1) dx=\ln 2-\int_{0}^1 \dfrac{x}{x+1}dx=2\ln 2-1\Rightarrow \lim_{n\to \infty} f(n) =4/e$

6voto

fianchetto Puntos 186

Vamos a utilizar:

Hecho.$\displaystyle\lim_{n\to\infty}\left(\frac{n^n}{n!}\right)^{\!1/n} \!\!\!\!\!\longrightarrow\mathrm{e}.$

Entonces $$ \left(\frac{(2n)!}{n^n n!}\right)^{1/n}=\left(\frac{2^{2n}\frac{n^n}{n!}}{\frac{(2n)^{2n}}{(2n)!}}\right)^{\!1/n}=4\frac{\left(\frac{n^n}{n!}\right)^{1/n}}{\left(\frac{(2n)^{2n}}{(2n)!}\right)^{1/n}} \longrightarrow\frac{4\mathrm{e}}{\mathrm{e}^2}=\frac{4}{\mathrm{e}}. $$

Nota. El Hecho anterior se puede demostrar como sigue: $$ \log \left(\frac{n!}{n^n}\right)^{1/n}=\frac{1}{n}\sum_{k=1}^n\log\left(\frac{k}{n}\right)\a\int_0^1\log x\,dx=-1. $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X