Utilizando la expresión $\text{Ei}(x)=\gamma+\ln x+\int_0^x\dfrac{e^t-1}{t}dt$ mencionado en http://people.math.sfu.ca/~cbm/aands/page_230.htm ,
$\int_a^\infty\dfrac{e^{-bx}\text{Ei}(x)}{x+c}dx$
$=\int_a^\infty\dfrac{e^{-bx}}{x+c}\left(\gamma+\ln x+\int_0^x\dfrac{e^t-1}{t}dt\right)~dx$
$=\gamma\int_a^\infty\dfrac{e^{-bx}}{x+c}dx+\int_a^\infty\dfrac{e^{-bx}\ln x}{x+c}dx+\int_a^\infty\dfrac{e^{-bx}}{x+c}\int_0^x\dfrac{e^t-1}{t}dt~dx$
$=\gamma\int_a^\infty\dfrac{e^{-bx}}{x+c}dx+\int_a^\infty\dfrac{e^{-bx}}{x+c}\int_1^x\dfrac{1}{t}dt~dx+\int_a^\infty\dfrac{e^{-bx}}{x+c}\int_0^x\dfrac{e^t-1}{t}dt~dx$
$=\gamma\int_a^\infty\dfrac{e^{-bx}}{x+c}dx+\int_a^\infty\int_1^x\dfrac{e^{-bx}}{t(x+c)}dt~dx+\int_a^\infty\int_0^x\dfrac{(e^t-1)e^{-bx}}{t(x+c)}dt~dx$
$=\gamma\int_a^\infty\dfrac{e^{-bx}}{x+c}dx+\int_1^a\int_a^\infty\dfrac{e^{-bx}}{t(x+c)}dx~dt+\int_a^\infty\int_t^\infty\dfrac{e^{-bx}}{t(x+c)}dx~dt+\int_0^a\int_a^\infty\dfrac{(e^t-1)e^{-bx}}{t(x+c)}dx~dt+\int_a^\infty\int_t^\infty\dfrac{(e^t-1)e^{-bx}}{t(x+c)}dx~dt$
$=\gamma\int_a^\infty\dfrac{e^{-bx}}{x+c}dx+\int_1^a\int_a^\infty\dfrac{e^{-bx}}{t(x+c)}dx~dt+\int_0^a\int_a^\infty\dfrac{(e^t-1)e^{-bx}}{t(x+c)}dx~dt+\int_a^\infty\int_t^\infty\dfrac{e^te^{-bx}}{t(x+c)}dx~dt$
$=\gamma\int_{a+c}^\infty\dfrac{e^{-b(x-c)}}{x}dx+\int_1^a\int_{a+c}^\infty\dfrac{e^{-b(x-c)}}{tx}dx~dt+\int_0^a\int_{a+c}^\infty\dfrac{(e^t-1)e^{-b(x-c)}}{tx}dx~dt+\int_a^\infty\int_{t+c}^\infty\dfrac{e^te^{-b(x-c)}}{tx}dx~dt$
$=\gamma e^{bc}E_1(b(a+c))+\int_1^a\dfrac{e^{bc}E_1(b(a+c))}{t}dt+\int_0^a\dfrac{(e^t-1)e^{bc}E_1(b(a+c))}{t}dt+\int_a^\infty\dfrac{e^{bc}e^tE_1(b(t+c))}{t}dt$
$=\gamma e^{bc}E_1(b(a+c))+e^{bc}E_1(b(a+c))\ln a+e^{bc}E_1(b(a+c))\int_0^a\dfrac{e^t-1}{t}dt+\int_a^\infty e^{bc}e^tE_1(b(t+c))~d(\ln t)$
$=e^{bc}E_1(b(a+c))\text{Ei}(a)+\int_{\ln a}^\infty e^{bc}e^{e^t}E_1(b(e^t+c))~dt$