La notación
$$
g\equiv f\circ f,\quad f(1)=un,\quad g(1)=b
$$
$g$ satisface la misma ecuación funcional
$$
g(m^2+g(n))=f(f(m)^2+f(n))=g(m)^2+n
$$
$g$ es estrictamente creciente $\qquad\diamond$
$$\begin{align}
&\color{green}{f(a)^2+m^2+a}
=f(a^2+f(m^2+a))
=f(a^2+f(m)^2+1)=\\
&f(f(m)^2+f(1+a))
=\color{green}{g(m)^2+1+a}\\
&\therefore m>n\iff g(m)>g(n)
\end{align}$$
$g(x)\ge x\qquad\spadesuit$
Caso Base: $g(1)\ge1$
Inducción de la hipótesis: $g(x)\ge x\;\forall\;x\ge n$
Inducción: $$\begin{align}g(n+1)&\ge g(n)+1\qquad\text{ using }\diamond\\&\ge n+1\end{align}$$
$g(x+1)\le x+g(1)^2\qquad\star$
$$
\begin{align}
g(x)\ge x&\implies g(1+g(x))\ge g(1+x)\qquad\text{ using }\diamond\\
&\implies g(1)^2+x\ge g(x+1)
\end{align}
$$
$g(1)=1\qquad\heartsuit$
$$\begin{align}
&g(1+b)=g(1+g(1))=b^2+1\\
\implies&g((1+b)^2+b)=(b^2+1)^2+1\\
\implies& (b^2+1)^2+1\le (1+b)^2+b+b^2-1\qquad\text{ using }\star\\
\implies& b^4-3b+2\le 0\\
\implies& b^4-3b^2+2\le0\\
\implies& (b^2-2)(b^2-1)\le0\\
\implies& 1\le b^2\le 2\\
\implies& b=1
\end{align}$$
$g(x)=x\qquad\clubsuit$
$$
\spadesuit,\estrella,\heartsuit\implica que g(x)=x
$$
$f$ es estrictamente creciente $\qquad\square$
$$
f(n+1)=f(1^2+g(n))=f(1)^2+f(n)>f(n)
$$
$f$ es la función identidad
El uso de $\square,\clubsuit$ vemos
$$
\begin{align}
&x>f(x)\implies f(x)>g(x)=x\\
&x<f(x)\implies f(x)<g(x)=x\\
&\therefore f(x)=x
\end{align}
$$