Dejemos que $y^1 = y^1(x^1,x^2)$ y $y^2 = y^2(x^1,x^2)$ . Supongamos también que;
$$\\$$
$$dy^1=\frac{\partial y^1}{\partial x^1}dx^1+\frac{\partial y_1}{\partial x^2}dx^2$$
$$dy^2=\frac{\partial y^2}{\partial x^1}dx^1+\frac{\partial y^2}{\partial x^1}dx^2 $$
Entonces tenemos;
$$dy^1dy^2 = dy^1 \wedge dy^2$ = \left ( \frac { \partial y^1}{ \partial x^1}dx^1+ \frac { \partial y^1}{ \partial x^2}dx^2 \right ) \wedge \left ( \frac { \partial y^2}{ \partial x^1}dx^1+ \frac { \partial y^2}{ \partial x^1}dx^2 \right )$$
Lo anterior da lo siguiente;
$$\\$$
$$ \left(\frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^1}\right) dx^1\wedge dx^1 + \left(\frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^1}\right) dx^1\wedge dx^2 + \left(\frac{\partial y^1}{\partial x^2} \frac{\partial y^2}{\partial x^1}\right) dx^2\wedge dx^1 + \left(\frac{\partial y^1}{\partial x^2} \frac{\partial y^2}{\partial x^1}\right) dx^2\wedge dx^2 $$
$$\\$$
Recordemos que $dx^i \wedge dx^i = 0, dx^j \wedge dx^i = -dx^i \wedge dx^j$ y así lo has hecho;
$$\\$$
$$\left(\frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^1}\right) dx^1\wedge dx^2 + \left(\frac{\partial y^1}{\partial x^2} \frac{\partial y^2}{\partial x^1}\right) dx^2\wedge dx^1 = \underbrace{ \left(\frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^1}-\frac{\partial y^1}{\partial x^2} \frac{\partial y^2}{\partial x^1} \right)}_{\textbf{Jacobian}} \ dx^1\wedge dx^2 $$