Buscamos mostrar que
$$\sum_{k=0}^n (-1)^k {n\elegir k} \frac{1}{k+1}
\sum_{j=0}^k \frac{H_{j+1}}{j+1} = \frac{1}{(1+n)^3}.$$
Este es
$$\sum_{k=0}^n (-1)^k {n+1\elegir k+1} \frac{k+1}{n+1} \frac{1}{k+1}
\sum_{j=0}^k \frac{H_{j+1}}{j+1} = \frac{1}{(1+n)^3}$$
o
$$\sum_{k=0}^n (-1)^k {n+1\elegir k+1}
\sum_{j=0}^k \frac{H_{j+1}}{j+1} = \frac{1}{(1+n)^2}.$$
El LHS es
$$\sum_{j=0}^n \frac{H_{j+1}}{j+1} \sum_{k=j}^n (-1)^k {n+1\choose k+1}.$$
Escrito
$${n+1\elegir k+1} = {n+1\elegir n-k} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n-k+1}} (1+z)^{n+1}
\; dz$$
podemos obtener el rango de control (se desvanece para $k\gt n$) por lo que se puede escribir para la
interior de la suma
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}} (1+z)^{n+1}
\sum_{k\ge j} (-1)^k z^k
\; dz
\\ = (-1)^j \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n-j+1}} (1+z)^{n+1}
\sum_{k\ge 0} (-1)^k z^k
\; dz
\\ = (-1)^j \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n-j+1}} (1+z)^{n+1}
\frac{1}{1+z}
\; dz
\\ = (-1)^j \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n-j+1}} (1+z)^{n}
\; dz
= (-1)^j {n\elegir n-j} = (-1)^j {n\elegir j}.$$
Por lo tanto, tiene que demostrar que
$$\sum_{j=0}^n \frac{H_{j+1}}{j+1} (-1)^j {n\elegir j}
= \frac{1}{(1+n)^2}$$
o, alternativamente,
$$\sum_{j=0}^n \frac{H_{j+1}}{j+1} (-1)^j
\frac{j+1}{n+1} {n+1\elegir j+1}
= \frac{1}{(1+n)^2}$$
que es
$$\sum_{j=0}^n H_{j+1} (-1)^j
{n+1\elegir j+1}
= \frac{1}{1+n}$$
El LHS es
$$\sum_{j=0}^n (-1)^j
{n+1\elegir j+1} \sum_{q=1}^{j+1} \frac{1}{q}
= \sum_{j=0}^n (-1)^j
{n+1\elegir j+1} \sum_{q=0}^{j} \frac{1}{p+1}
\\ = \sum_{q=0}^n \frac{1}{p+1}
\sum_{j=q}^n (-1)^j {n+1\elegir j+1}.$$
Nos re-utilizar el cálculo de antes
$$\sum_{q=0}^n \frac{1}{p+1} (-1)^p {n\elegir q}
= \sum_{q=0}^n \frac{1}{p+1} (-1)^q \frac{q+1}{n+1} {n+1\elegir q+1}
\\ = \frac{1}{n+1} \sum_{q=0}^n (-1)^p {n+1\elegir q+1}.$$
Hemos reducido la demanda a
$$\sum_{q=0}^n (-1)^q {n+1\choose q+1} = 1$$
que tiene por la inspección o por escrito
$$- \sum_{q=1}^{n+1} (-1)^p {n+1\elegir q}
= 1 - \sum_{q=0}^{n+1} (-1)^p {n+1\elegir q} = 1 - (1-1)^{n+1} = 1.$$