Pregunta es: si $$f(a)= \int_0^\infty e^{-t^2}\cdot \cos(at)~dt$$ then I have to show that $f ' (a) =-\dfrac {un} {2} \cdot f (a) $.
Sé que $\displaystyle\frac{d}{da}f(a)=\int_0^\infty\frac{\partial}{\partial{a}}(\cos(at))\cdot e^{-t^{2}}~dt=-a\int_0^\infty e^{-t^2}\sin(at)~dt$. ¿Cómo terminar de aquí?