\begin{align}
\prod_{n=0}^{\infty}\frac{4n+2}{4n+2+(-1)^n}&=\prod_{n=0}^{\infty}\frac{8n+2}{8n+3}\frac{8n+6}{8n+5}\\
&=\prod_{n=0}^{\infty}\frac{8n+2}{8n+3}\frac{8n+4}{8n+3}\frac{8n+3}{8n+4}\frac{8n+6}{8n+5}\frac{8n+4}{8n+5}\frac{8n+5}{8n+4}\\
&=\prod_{n=0}^{\infty}\left(\frac{8n+2}{8n+3}\frac{8n+4}{8n+3}\right)\left(\frac{8n+6}{8n+5}\frac{8n+4}{8n+5}\right)\left(\frac{8n+5}{8n+4}\frac{8n+3}{8n+4}\right)\\
&=\prod_{n=0}^{\infty}\left(\frac{8n+2}{8n+3}\frac{8n+4}{8n+3}\right)\prod_{n=0}^{\infty}\left(\frac{8n+6}{8n+5}\frac{8n+4}{8n+5}\right)\prod_{n=0}^{\infty}\left(\frac{8n+5}{8n+4}\frac{8n+3}{8n+4}\right)\\
&=\prod_{n=0}^{\infty}\left(1-\frac{1}{(8n+3)^2}\right)\prod_{n=0}^{\infty}\left(1-\frac{1}{(8n+4)^2}\right)\prod_{n=0}^{\infty}\left(1-\frac{1}{(8n+5)^2}\right)\\
\end {Alinee el}
Ahora tenga en cuenta que utilizando las propiedades de la función Gamma - esto me mantuvo ocupado pero bastante divertida - tenemos\begin{align}
\prod_{n=0}^{\infty}\left(1-\frac{1}{(8n+q)^2}\right)
&=\frac{(q^2-1)\Gamma\left(\frac{q+8}{8}\right)^2}{q^2\Gamma\left(\frac{q+7}{8}\right)\Gamma\left(\frac{q+9}{8}\right)}\\
\end {Alinee el}
Por lo tanto se convierte en su límite:\begin{align}
l&=\frac{8\Gamma\left(\frac{11}{8}\right)^2}{9\Gamma\left(\frac{10}{8}\right)\Gamma\left(\frac{12}{8}\right)}\frac{15\Gamma\left(\frac{12}{8}\right)^2}{16\Gamma\left(\frac{11}{8}\right)\Gamma\left(\frac{13}{8}\right)}\frac{24\Gamma\left(\frac{13}{8}\right)^2}{25\Gamma\left(\frac{12}{8}\right)\Gamma\left(\frac{14}{8}\right)}\\
&=\frac45\frac{\Gamma\left(\frac{11}{8}\right)}{\Gamma\left(\frac{10}{8}\right)}\frac{\Gamma\left(\frac{13}{8}\right)}{\Gamma\left(\frac{14}{8}\right)}\\
&=\frac45\frac{\frac{3}{8}\Gamma\left(\frac{3}{8}\right)}{\frac{2}{8}\Gamma\left(\frac{2}{8}\right)}\frac{\frac{5}{8}\Gamma\left(\frac{5}{8}\right)}{\frac{6}{8}\Gamma\left(\frac{6}{8}\right)}\\
&=\frac{\Gamma\left(\frac{3}{8}\right)}{\Gamma\left(\frac{2}{8}\right)}\frac{\Gamma\left(\frac{5}{8}\right)}{\Gamma\left(\frac{6}{8}\right)}\\
&=\frac{\frac{\pi}{\sin\frac38\pi}}{\frac{\pi}{\sin\frac28\pi}}\\
&=\frac{\sqrt{2}/2}{\sqrt{2+\sqrt2}/2}=\sqrt{2-\sqrt2}
\end {Alinee el}