5 votos

Interpolación de Lagrange

Así que el problema es este;

Para la Interpolación de Lagrange en los nodos $x_0 < x_1 < ... < x_{n-1} < x_n$ de los datos de ${(x_i, f(x_i))}^{n}_{i=0}$ la interpolación polinómica es $\sum f(x_i)L_i(x)$ donde $L_i(x) = \frac{(x-x_0)...(x-x_{i-1}(x-x_{i+1}...(x_i-x_n)}{(x_i-x_0)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}.$ Demostrar que $L_0(x) = 1 + \frac{(x-x_0)}{(x_0-x_1)}+\frac{(x-x_0)(x-x_1)}{(x_0-x_1)(x_0-x_2)}+...+\frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)}$ Y el estado el resultado general para $L_i(x)$.

Tuve la oportunidad de probar la primera parte sin problema.

$= 1 +\ \frac{(x-x_0)}{(x_0-x_1)}+\ \frac{(x-x_0)(x-x_1)}{(x_{0}-x_1)(x_{0}-x_2)}+...+\ \frac{(x-x_0)(x-x_1)...(x-x_k)}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}\\$ $ a= \frac{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+\ \frac{(x-x_0)(x_0-x_2)...(x_0-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+\ \frac{(x-x_0)(x-x_1)...(x-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+...+\ \frac{(x-x_0)(x-x_1)...(x-x_k)}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}\\$ $ a= \frac{(x_0-x_2)(x-x_1)...(x_0-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+\ \frac{(x-x_0)(x-x_1)...(x-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+...+\ \frac{(x-x_0)(x-x_1)...(x-x_k)}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}\\$ $a=\frac{(x-x_1)(x-x_2)...(x_{0}-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}+\ \frac{(x-x_0)(x-x_1)...(x-x_k)}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}\\$ $= \frac{(x-x_1)(x-x_2)...(x-x_{k+1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_{k+1})}$

Por lo que la hipótesis inductiva se tiene para $L_0(x)$ en los nodos $x_0<...<x_k<x_{k+1}$

Hice algunos experimentos y ampliado un par de polinomios $L_i$...

$L_0(x) = 1+\frac{(x-x_0)}{(x_0-x_1)}+\frac{(x-x_0)(x-x_1)}{(x_0-x_1)(x_0-x_2)}+...+\frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)}$

$L_1(x) = \frac{(x-x_1)}{(x_1-x_0)}+\frac{(x-x_0)(x-x_1)}{(x_0-x_1)(x_1-x_2)}+...+\frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)}$

$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}+\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}+...+\frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{n-1})}{(x_2-x_0)(x_2-x_1)...(x_2-x_n)}$

Gracias; Bray.

2voto

S. W. Cheung Puntos 5538

Creo que, si se me pide un análogo para el resultado, yo respondería,

ps

Donde$$L_i(x) = 1 + \frac{x - x_i}{x_i - x_{i+1}} + \frac{(x - x_i)(x - x_{i+1})}{(x_i - x_{i+1})(x_i - x_{i+2})} + \ldots + \frac{(x - x_i)(x - x_{i+1})\ldots(x - x_{n+i-1})}{(x_i - x_{i+1})(x_i - x_{i+2})\ldots(x_i - x_{n+i})}$ para$x_{n+j} = x_j$.

Además, la prueba para la primera parte se hace fácilmente comprobando RHS cumple

ps

Y tal polinomio con grado no mayor que$j \geq 1$ es único.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X