$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}\int_{0}^{1}nx^{2}\pars{1 -x^{2}}^n\,\dd x & =
\lim_{n \to \infty}\bracks{n%
\int_{0}^{1}\exp\pars{2\ln\pars{x} + n\ln\pars{1 - x^{2}}}\,\dd x}
\end{align}
El $\ds{\exp}$-argumento tiene un 'sharp máximo' en
$\ds{x_{n} = \pars{n + 1}^{-1/2}}$ tal que
\begin{align}
\lim_{n \to \infty}\int_{0}^{1}nx^{2}\pars{1 -x^{2}}^n\,\dd x & =
\lim_{n \to \infty}\bracks{\pars{n \over n + 1}^{n + 1}%
\int_{0}^{\infty}\exp\pars{-\,{\bracks{x - x_{n}}^{\,2} \over 2\sigma_{n}^{2}}}\,\dd x}
\end{align}
donde $\ds{\sigma_{n} \equiv {\root{n} \over 2\pars{n + 1}}}$.
A continuación,
\begin{align}
\lim_{n \to \infty}\int_{0}^{1}nx^{2}\pars{1 -x^{2}}^n\,\dd x & =
\expo{-1}\root{\pi \over 2}\lim_{n \to \infty}\braces{%
\sigma_{n}\bracks{1 + \mrm{erf}\pars{x_{n} \over \root{2}\sigma_{n}}}}
\\[5mm] & =
\expo{-1}\root{\pi \over 2}\bracks{1 + \mrm{erf}\pars{\root{2}}}
\lim_{n \to \infty}\sigma_{n} = \bbx{0}
\end{align}