$$g(x,n)=\overbrace{f(f(f(...f(x))}^\text{n}$$
Usted puede expresar $g(x,n)$ en Abel ecuación.
http://en.wikipedia.org/wiki/Abel_equation
Vamos a definir $h(f(x))=h(x)+1$
$h(f(f(x)))=h(f(x))+1=h(x)+1+1=h(x)+2$
$h(f(f(f(x))))=h(f(x))+2=h(x)+1+2=h(x)+3$
Si sigues en ese camino
$h(\overbrace{f(f(f(...f(x))}^\text{n})=h(g(x,n))=h(x)+n$
Si usted puede encontrar $h(x)$ , usted puede encontrar fácilmente $g(x,n)$
$h^{-1}(h(g(x,n))=h^{-1}(h(x)+n)$
$g(x,n)=\overbrace{f(f(f(...f(x))}^\text{n}=h^{-1}(h(x)+n)$
Vamos a tratar de encontrar $h(x)$
$$\cfrac{\partial}{\partial n }(h(g(x,n)))=\cfrac{\partial}{\partial n }(h(x)+n)$$
$$h'(g(x,n))\cfrac{\partial(g(x,n))}{\partial n }=1 \tag1$$
$$\cfrac{\partial}{\partial x }(h(g(x,n)))=\cfrac{\partial}{\partial x }(h(x)+n)$$
$$h'(g(x,n))\cfrac{\partial(g(x,n))}{\partial x }=h'(x) \tag2$$
Si dividimos dos ecuaciones (1) y (2), a continuación, $h'(g(x,n))$ desapareciera
$$\cfrac{\partial(g(x,n))}{\partial n }=\frac{1}{h'(x)}\cfrac{\partial(g(x,n))}{\partial x }$$
$$\cfrac{\partial^2(g(x,n))}{\partial n^2 }=\frac{1}{h'(x)}\cfrac{\partial}{\partial x }(\cfrac{\partial(g(x,n))}{\partial n })=\frac{1}{h'(x)}\cfrac{\partial}{\partial x }(\frac{1}{h'(x)}\cfrac{\partial(g(x,n))}{\partial x })$$
$$\cfrac{\partial^3(g(x,n))}{\partial n^3 }=\frac{1}{h'(x)}\cfrac{\partial}{\partial x }(\cfrac{\partial(g(x,n))}{\partial n })=\frac{1}{h'(x)}\cfrac{\partial}{\partial x }(\frac{1}{h'(x)}\cfrac{\partial}{\partial x }(\frac{1}{h'(x)}\cfrac{\partial(g(x,n))}{\partial x }))$$
En series de Taylor de método.
$g(x,n)=f(g(x,n-1))$
$g(x,1)=f(x)=f(g(x,0))$
$g(x,0)=x$
$\cfrac{\partial(g(x,n))}{\partial n }|_{n=0}=\cfrac{1}{h'(x)}\cfrac{\partial(x+n.u(x)+n^2.p(x,n)))}{\partial x }|_{n=0}=\cfrac{1}{h'(x)}(1+nu'(x)+n^2\cfrac{\partial(p(x,n)))}{\partial x }|_{n=0}=\cfrac{1}{h'(x)}$
$\cfrac{\partial^2(g(x,n))}{\partial n^2 }|_{n=0}=\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)})'$
$\cfrac{\partial^3(g(x,n))}{\partial n^3 }|_{n=0}=\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)})')'$
$$g(x,n)= g(x,0)+n\cfrac{\partial(g(x,n))}{\partial n }|_{n=0}+\frac{n^2}{2!}\cfrac{\partial^2(g(x,n))}{\partial n^2 }|_{n=0}+...$$
$$g(x,n)= x+n\cfrac{1}{h'(x)}+\frac{n^2}{2!}\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)})'+\frac{n^3}{3!}\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)}(\cfrac{1}{h'(x)})')'...$$
Si $\cfrac{1}{h'(x)}=w(x)$
$$g(x,n)= x+nw(x)+\frac{n^2}{2!}w(x)w'(x)+\frac{n^3}{3!}w(x)(w(x)w'(x))'...$$
$g(x,1)=f(x)=x+w(x)+\frac{1}{2!}w(x)w'(x)+\frac{1}{3!}w(x)(w(x)w'(x))'+...$
$g(x,-1)=f^{-1}(x)=x-w(x)+\frac{1}{2!}w(x)w'(x)-\frac{1}{3!}w(x)(w(x)w'(x))'+...$
Para ver cómo funciona en un ejemplo muy sencillo:
Si $h(x)=\ln(x)$
$$w(x)=\frac{1}{h'(x)}=x$$
$h(f(x))=h(x)+1$
$$\ln(f(x))=ln(x)+1$$
$$f(x)=e^{ln(x)+1}=ex$$
$$g(x,n)=e^n x$$
$$g(x,n)= x+nw(x)+\frac{n^2}{2!}w(x)w'(x)+\frac{n^3}{3!}w(x)(w(x)w'(x))'...$$
$$g(x,n)= x+nx+\frac{n^2}{2!}x (x)'+\frac{n^3}{3!}x (x)'+...=x(1+n+\frac{n^2}{2!}+\frac{n^3}{3!}+...)=e^n x$$
$$g(x,n)= x+nw(x)+\frac{n^2}{2!}w(x)w'(x)+\frac{n^3}{3!}w(x)(w(x)w'(x))'...$$
$$g(x,-n)= x-nw(x)+\frac{n^2}{2!}w(x)w'(x)-\frac{n^3}{3!}w(x)(w(x)w'(x))'+...$$
$$\frac{g(x,n)-g(x,-n)}{2}= nw(x)+\frac{n^3}{3!}w(x)(w(x)w'(x))'+...$$
$$\lim_{n=0}\frac{g(x,n)-g(x,-n)}{2n}= w(x)=\frac{1}{h'(x)}$$
$$h(x)=\lim_{n\to 0}\int\frac{2n}{g(x,n)-g(x,-n)} dx$$
o
$$h(x)=\lim_{n\to 0}\int\frac{n}{g(x,n)-x} dx$$
Todavía es difícil problema para encontrar $h(x)$.
No se puede aproximación para $h(x)$
$$g(x,1)=f(x)= x+w(x)+\frac{1}{2!}w(x)w'(x)+\frac{1}{3!}w(x)(w(x)w'(x))'...$$
$$g(x,-1)=f^{-1}(x)= x-w(x)+\frac{1}{2!}w(x)w'(x)-\frac{1}{3!}w(x)(w(x)w'(x))'+...$$
Después de la 3ª términos , Si tenemos pequeños valores de y, entonces, podemos escribir
$$f(x)+f^{-1}(x)-2x \approx w(x)w'(x)$$
$$2\int f(x)+f^{-1}(x)-2x dx \approx w^2(x)+c$$
Yo todavía no sé cómo escribir $h(x)$ exactamente como la serie de $f(x)$.