$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{k = 1}^{n}k^{2}\pars{k - 1}{n \elegir k}^{2} =
n^{2}\pars{n - 1}{2n - 3 \elegir n - 2}}$
\begin{align}
&\mbox{Lets consider}\quad
\fermi\pars{x} \equiv \sum_{k = 0}^{n}{n \choose k}^{2}x^{k}
\\&\mbox{such that}\quad
\sum_{k = 1}^{n}k^{2}\pars{k - 1}{n \choose k}^{2}
=\left.\bracks{\pars{x\,\partiald{}{x}}^{3} - \pars{x\,\partiald{}{x}}^{2}}\fermi\pars{x}
\right\vert_{x\ =\ 1}\tag{1}
\end{align}
De ahora en adelante vamos a utilizar la identidad
$$\color{#c00000}{%
{m \elegir n} = \int_{\verts{z} = 1}{\pars{1 + z}^{m} \over z^{n + 1}}
\,{\dd z \más de 2\pi\ic}\,,\qquad m, n \in {\mathbb N}\,,\quad m \geq n}\etiqueta{2}
$$
\begin{align}
\fermi\pars{x}&=\sum_{k = 0}^{n}x^{k}{n \choose k}
\int_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{k + 1}}\,{\dd z \over 2\pi\ic}
=\int_{\verts{z} = 1}{\pars{1 + z}^{n} \over z}
\sum_{k = 0}^{n}{n \choose k}\pars{x \over z}^{k}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\int_{\verts{z} = 1}{\pars{1 + z}^{n} \over z}\pars{1 + {x \over z}}^{n}
\,{\dd z \over 2\pi\ic}
=\int_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{n + 1}}\,\pars{x + z}^{n}
\,{\dd z \over 2\pi\ic}\tag{3}
\end{align}
Con $\pars{1}$ $\pars{3}$ tendremos:
\begin{align}
&\color{#00f}{\large\sum_{k = 1}^{n}k^{2}\pars{k - 1}{n \choose k}^{2}}
\\[3mm]&=\int_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{n + 1}}\,
n\pars{n - 1}\bracks{%
\pars{n - 2}\pars{1 + z}^{n - 3} + 2\pars{1 + z}^{n - 2}}\,{\dd z \over 2\pi\ic}
\\[3mm]&=n\pars{n -1}\pars{n - 2}
\int_{\verts{z} = 1}{\pars{1 + z}^{2n - 3} \over z^{n + 1}}\,{\dd z \over 2\pi\ic}
+
2n\pars{n -1}
\int_{\verts{z} = 1}{\pars{1 + z}^{2n - 2} \over z^{n + 1}}\,{\dd z \over 2\pi\ic}
\\[3mm]&=n\pars{n -1}\pars{n - 2}{2n - 3 \choose n}
+
2n\pars{n -1}{2n - 2 \choose n}
\\[3mm]&={\pars{2n - 3}! \over \pars{n - 3}!\pars{n - 3}!}
+ 2\,{\pars{2n - 2}! \over \pars{n - 2}!\pars{n - 2}!}
\\[3mm]&={\pars{n - 1}\pars{n - 2}^{2} + 2\pars{n - 1}\pars{2n - 2}
\over \pars{n - 2}!\pars{n - 1}!}\,\pars{2n - 3}!
=\bracks{\pars{n - 2}^{2} + 4n - 4}\pars{n - 1}
{2n - 3 \choose n - 2}
\\[3mm]&=\color{#00f}{\large n^{2}\pars{n - 1}{2n - 3 \choose n - 2}}
\end{align}