EDIT: el primer par de veces he intentado publicar esta respuesta, se negó. Resulta que hay 30.000 caracteres máximo para las respuestas, probablemente para preguntas. Así que corté la tabla de abajo, que anteriormente era de $ 5 \geq x \geq -1.$
ORIGINAL: Bien, fue divertido. No estoy seguro de cómo hacer tu problema real, en vez de eso, he resuelto más fácil $$ f(f(x)) = x + x^2,$$ by a little-known procedure due to J. Ecalle, about 1973. The method is described in a book by M. Kuczma, B. Chococzewski, R. Ger, called Iterative Functional Equations. I give the value of $f(x)$ for $ 3 \geq x \geq -1.$
The basic task, once each on either side of $0,$ is to find a Fatou coordinate $\alfa$ that solves $$ \alpha(h(x)) = \alpha(x) + 1,$$ where in this case we take $h(x) = x + x^2.$ Then we find the desired $f$ por tomar
$$ f(x) = \alpha^{-1} \left( \frac{1}{2} + \alpha(x) \right).$$ Note that it is necessary to find the inverse function of $\alfa.$ I did this by a numerical bisection, and I'm afraid that I wrote it assuming $\alfa$ was decreasing, so for this output I had to use $-\alpha$ and subtract $1/2$ instead of add it, things like that. The inverse function is the easiest part mathematically but the worst part of the program.
Anyway, if you simultaneously graph, on the same xy-axes, $(x,x + x^2)$ along with the diagonal line $(x,x)$ and the new curve $(x,f(x)),$ well, it is a nice picture. I have a website with all the relevant background, but the host computer is down for another few weeks.
Note that, by nature, this extends to a holomorphic function on a narrow open set containing the positive reals, another containing the interval $(-1,1),$ a third containing $(-\infty, -1).$ However, the function is probably only $C^\infty$ at $-1$ and $0.$
EDIT TOO: Note that the symmetry $h(-1-x) = h(x)$ carries over to the "answer" $f(x),$ so we know what we have once we know $f(x),$ or how to calculate $f(x),$ for $x \geq \frac{-1}{2}.$ En esa nota, ahora nos encontramos con
$ f(\frac{-1}{2}) \approx -0.308725 < \frac{-1}{4} = h(\frac{-1}{2}),$ que es como debe ser, $f(x)$ debe ser de entre $x$ $h(x).$ Lo que hemos hecho, con éxito, excepto por no ser analítica a lo largo de toda la línea (y no definibles en los barrios de $0$ o $-1$$\mathbb C$) es producir una parametrización de la familia de la interpolación de funciones,
$$ h_t(x) = \alpha^{-1} \left( t + \alpha(x) \right).$$
La definición de propiedades de la se $$h_0(x) = x, \; \; h_1(x) = h(x), \; \; h_{s+t}(x) = h_s(h_t(x)) = h_t(h_s(x)). $$
Así que, simplemente, se llevó $f = h_{1/2}.$ La razón de esta familia en particular, se considera un fracaso, desde el punto de vista de Irvine Noel Baker (1932-2001), es precisamente el hecho de no ampliar a un conjunto abierto en $\mathbb C,$ causado por problemas en la $-1$ $0.$ nota Final, si este negocio realmente funciona como Irvine intención, uno también puede producir en el complejo de los parámetros de $t.$ Esto es raro. El único ejemplo que conozco es el de la familia de transformaciones de Moebius,
$$ h_t(z) = \frac{z}{1+ t z}.$$ Of course, given some holomorphic $\omega(z)$ with $\omega(0)=0$ and $\omega'(0)=1,$ one obtains a superficially different example $ H_t(z) = \omega^{-1}( h_t(\omega(z))).$
As was pointed out in a comment, there is an explicit solution to $g(g(x)) = x^2$ given by $g(x) = |x|^{\sqrt 2}.$ It is likely that our $f(x)$ es cerca de
$|x|^{\sqrt 2}$ grandes $|x|.$ siempre es posible que nuestro $f(x)$ tiene una fórmula explícita, no verifiqué que cuidadosamente, ya que no me esperaba.
En caso de interés, por correo electrónico a mí. Sé que las cosas.
x alpha(x) f(x) f(f(x)) f(f(x)) - (x + x^2)
3.000000 -0.101309 5.447411 12.000000 -3.89775e-10
2.990000 -0.098108 5.423742 11.930100 5.07214e-09
2.980000 -0.094892 5.400101 11.860400 -1.10352e-09
2.970000 -0.091660 5.376488 11.790900 9.5132e-09
2.960000 -0.088411 5.352904 11.721600 -1.51e-08
2.950000 -0.085146 5.329349 11.652500 -1.76893e-10
2.940000 -0.081865 5.305822 11.583600 -1.56864e-09
2.930000 -0.078567 5.282324 11.514900 1.1039e-09
2.920000 -0.075252 5.258855 11.446400 -6.60402e-09
2.910000 -0.071920 5.235415 11.378100 1.83272e-08
2.900000 -0.068572 5.212003 11.310000 6.31031e-09
2.890000 -0.065206 5.188620 11.242100 -7.84935e-09
2.880000 -0.061823 5.165266 11.174400 4.82576e-09
2.870000 -0.058422 5.141941 11.106900 3.31783e-10
2.860000 -0.055004 5.118646 11.039600 2.35487e-09
2.850000 -0.051567 5.095379 10.972500 2.28822e-09
2.840000 -0.048113 5.072141 10.905600 -2.35738e-09
2.830000 -0.044641 5.048933 10.838900 1.52213e-08
2.820000 -0.041150 5.025754 10.772400 -8.93154e-09
2.810000 -0.037641 5.002604 10.706100 -4.66779e-09
2.800000 -0.034113 4.979483 10.640000 3.93858e-10
2.790000 -0.030567 4.956392 10.574100 9.60916e-09
2.780000 -0.027001 4.933330 10.508400 6.95821e-10
2.770000 -0.023416 4.910298 10.442900 -1.74676e-10
2.760000 -0.019812 4.887296 10.377600 6.04472e-09
2.750000 -0.016189 4.864323 10.312500 -6.78922e-09
2.740000 -0.012545 4.841379 10.247600 3.59014e-09
2.730000 -0.008882 4.818466 10.182900 -5.07475e-09
2.720000 -0.005198 4.795582 10.118400 5.82313e-09
2.710000 -0.001495 4.772728 10.054100 4.54672e-09
2.700000 0.002229 4.749904 9.990000 1.92885e-11
2.690000 0.005974 4.727110 9.926100 1.17165e-09
2.680000 0.009740 4.704346 9.862400 -1.02179e-09
2.670000 0.013527 4.681612 9.798900 1.49861e-09
2.660000 0.017335 4.658908 9.735600 3.89245e-10
2.650000 0.021164 4.636234 9.672500 1.00368e-08
2.640000 0.025016 4.613590 9.609600 -6.6567e-09
2.630000 0.028889 4.590977 9.546900 3.70571e-09
2.620000 0.032784 4.568394 9.484400 1.38761e-08
2.610000 0.036702 4.545842 9.422100 -4.83761e-09
2.600000 0.040642 4.523320 9.360000 9.87709e-09
2.590000 0.044605 4.500828 9.298100 9.348e-09
2.580000 0.048591 4.478368 9.236400 -2.90049e-09
2.570000 0.052600 4.455937 9.174900 -5.91812e-09
2.560000 0.056633 4.433538 9.113600 7.64032e-10
2.550000 0.060689 4.411169 9.052500 1.4757e-09
2.540000 0.064770 4.388831 8.991600 -6.12545e-10
2.530000 0.068875 4.366524 8.930900 9.22328e-09
2.520000 0.073004 4.344248 8.870400 6.82412e-09
2.510000 0.077158 4.322003 8.810100 3.96887e-10
2.500000 0.081336 4.299789 8.750000 -2.99742e-10
2.490000 0.085540 4.277606 8.690100 8.97266e-09
2.480000 0.089770 4.255454 8.630400 9.81059e-11
2.470000 0.094025 4.233334 8.570900 4.32604e-10
2.460000 0.098307 4.211245 8.511600 -3.40024e-11
2.450000 0.102614 4.189187 8.452500 -2.69127e-09
2.440000 0.106949 4.167161 8.393600 3.91647e-09
2.430000 0.111310 4.145166 8.334900 7.10094e-09
2.420000 0.115698 4.123203 8.276400 -9.34695e-09
2.410000 0.120114 4.101272 8.218100 -2.39256e-09
2.400000 0.124557 4.079372 8.160000 -2.51499e-09
2.390000 0.129029 4.057504 8.102100 -1.53317e-09
2.380000 0.133529 4.035668 8.044400 -7.4922e-11
2.370000 0.138057 4.013864 7.986900 1.24882e-09
2.360000 0.142615 3.992091 7.929600 -1.44446e-09
2.350000 0.147202 3.970351 7.872500 -1.58503e-10
2.340000 0.151818 3.948643 7.815600 -5.74248e-09
2.330000 0.156465 3.926967 7.758900 2.86983e-09
2.320000 0.161141 3.905323 7.702400 6.34277e-10
2.310000 0.165849 3.883712 7.646100 1.91794e-09
2.300000 0.170587 3.862133 7.590000 -6.59022e-09
2.290000 0.175357 3.840587 7.534100 2.98792e-09
2.280000 0.180158 3.819073 7.478400 -9.48332e-10
2.270000 0.184992 3.797591 7.422900 -3.32311e-09
2.260000 0.189858 3.776143 7.367600 -8.03366e-10
2.250000 0.194756 3.754727 7.312500 -1.0734e-09
2.240000 0.199688 3.733344 7.257600 -1.27912e-10
2.230000 0.204654 3.711993 7.202900 6.48889e-09
2.220000 0.209653 3.690676 7.148400 -3.59193e-09
2.210000 0.214687 3.669392 7.094100 -3.15102e-10
2.200000 0.219755 3.648141 7.040000 3.13407e-10
2.190000 0.224859 3.626923 6.986100 -1.07361e-09
2.180000 0.229998 3.605738 6.932400 -3.69792e-09
2.170000 0.235174 3.584587 6.878900 -7.75705e-10
2.160000 0.240386 3.563469 6.825600 4.24772e-10
2.150000 0.245634 3.542384 6.772500 -1.96853e-10
2.140000 0.250921 3.521333 6.719600 2.54623e-09
2.130000 0.256245 3.500316 6.666900 2.36294e-09
2.120000 0.261607 3.479332 6.614400 5.06827e-09
2.110000 0.267008 3.458383 6.562100 1.67262e-09
2.100000 0.272448 3.437467 6.510000 3.19921e-10
2.090000 0.277928 3.416585 6.458100 -6.2056e-11
2.080000 0.283448 3.395737 6.406400 -2.17898e-10
2.070000 0.289009 3.374923 6.354900 1.32299e-09
2.060000 0.294612 3.354143 6.303600 -4.07069e-10
2.050000 0.300256 3.333398 6.252500 6.40859e-10
2.040000 0.305942 3.312687 6.201600 2.31068e-10
2.030000 0.311672 3.292010 6.150900 -4.17103e-11
2.020000 0.317444 3.271368 6.100400 1.14831e-09
2.010000 0.323261 3.250760 6.050100 7.08263e-10
2.000000 0.329122 3.230188 6.000000 -4.5745e-09
1.990000 0.335029 3.209650 5.950100 -6.42627e-09
1.980000 0.340981 3.189146 5.900400 -3.42394e-09
1.970000 0.346980 3.168678 5.850900 -3.15673e-09
1.960000 0.353025 3.148245 5.801600 -2.28888e-09
1.950000 0.359118 3.127847 5.752500 3.42631e-10
1.940000 0.365260 3.107484 5.703600 -4.73638e-10
1.930000 0.371450 3.087156 5.654900 1.91659e-09
1.920000 0.377690 3.066864 5.606400 -1.26383e-09
1.910000 0.383981 3.046607 5.558100 -3.19826e-09
1.900000 0.390322 3.026386 5.510000 3.7766e-10
1.890000 0.396715 3.006200 5.462100 3.34769e-09
1.880000 0.403160 2.986050 5.414400 1.70795e-09
1.870000 0.409659 2.965936 5.366900 -4.34776e-10
1.860000 0.416211 2.945858 5.319600 3.49395e-10
1.850000 0.422818 2.925815 5.272500 4.95744e-10
1.840000 0.429481 2.905809 5.225600 -1.7308e-09
1.830000 0.436200 2.885839 5.178900 1.25981e-09
1.820000 0.442975 2.865906 5.132400 -1.68049e-09
1.810000 0.449809 2.846008 5.086100 4.21289e-10
1.800000 0.456702 2.826148 5.040000 -7.46454e-11
1.790000 0.463654 2.806323 4.994100 -4.28727e-11
1.780000 0.470666 2.786536 4.948400 1.04275e-10
1.770000 0.477740 2.766785 4.902900 2.13125e-09
1.760000 0.484876 2.747071 4.857600 3.24237e-10
1.750000 0.492076 2.727394 4.812500 -1.40458e-10
1.740000 0.499340 2.707754 4.767600 2.58735e-09
1.730000 0.506669 2.688152 4.722900 -1.44411e-09
1.720000 0.514064 2.668586 4.678400 1.66093e-11
1.710000 0.521526 2.649058 4.634100 1.16189e-09
1.700000 0.529057 2.629568 4.590000 6.39306e-10
1.690000 0.536657 2.610115 4.546100 1.64964e-09
1.680000 0.544327 2.590699 4.502400 6.04131e-09
1.670000 0.552069 2.571322 4.458900 -3.16091e-09
1.660000 0.559884 2.551982 4.415600 1.83026e-09
1.650000 0.567772 2.532680 4.372500 3.74477e-10
1.640000 0.575735 2.513417 4.329600 -3.6283e-09
1.630000 0.583775 2.494191 4.286900 -1.86412e-09
1.620000 0.591893 2.475004 4.244400 -5.64659e-10
1.610000 0.600089 2.455856 4.202100 1.02487e-10
1.600000 0.608365 2.436746 4.160000 2.39595e-09
1.590000 0.616722 2.417674 4.118100 1.08606e-10
1.580000 0.625163 2.398642 4.076400 -3.66385e-11
1.570000 0.633688 2.379648 4.034900 4.33176e-12
1.560000 0.642298 2.360693 3.993600 -3.39132e-10
1.550000 0.650995 2.341778 3.952500 6.08593e-10
1.540000 0.659781 2.322901 3.911600 1.73258e-09
1.530000 0.668657 2.304064 3.870900 1.83526e-09
1.520000 0.677625 2.285267 3.830400 7.67767e-10
1.510000 0.686687 2.266509 3.790100 -3.78556e-10
1.500000 0.695843 2.247791 3.750000 2.88475e-09
1.490000 0.705096 2.229112 3.710100 3.97754e-10
1.480000 0.714447 2.210474 3.670400 5.09553e-09
1.470000 0.723899 2.191876 3.630900 4.78744e-10
1.460000 0.733453 2.173318 3.591600 1.82767e-09
1.450000 0.743110 2.154800 3.552500 -1.19282e-10
1.440000 0.752874 2.136322 3.513600 2.08141e-10
1.430000 0.762746 2.117886 3.474900 2.90108e-10
1.420000 0.772727 2.099490 3.436400 1.77907e-10
1.410000 0.782820 2.081134 3.398100 -9.74806e-11
1.400000 0.793028 2.062820 3.360000 1.5857e-09
1.390000 0.803351 2.044547 3.322100 2.25511e-10
1.380000 0.813794 2.026315 3.284400 -1.82166e-09
1.370000 0.824357 2.008125 3.246900 9.02738e-11
1.360000 0.835043 1.989976 3.209600 -5.12752e-10
1.350000 0.845855 1.971869 3.172500 3.21432e-10
1.340000 0.856796 1.953803 3.135600 -3.4068e-10
1.330000 0.867867 1.935779 3.098900 -5.10983e-11
1.320000 0.879071 1.917798 3.062400 -2.29747e-09
1.310000 0.890412 1.899859 3.026100 -2.92007e-09
1.300000 0.901892 1.881962 2.990000 -8.43905e-10
1.290000 0.913513 1.864107 2.954100 6.49822e-10
1.280000 0.925280 1.846296 2.918400 -6.38912e-10
1.270000 0.937194 1.828527 2.882900 -2.0813e-10
1.260000 0.949260 1.810801 2.847600 6.72884e-10
1.250000 0.961480 1.793118 2.812500 3.85402e-10
1.240000 0.973857 1.775478 2.777600 3.137e-09
1.230000 0.986396 1.757882 2.742900 -3.80674e-10
1.220000 0.999100 1.740329 2.708400 -8.53615e-10
1.210000 1.011972 1.722820 2.674100 -6.79273e-11
1.200000 1.025016 1.705355 2.640000 -8.11715e-10
1.190000 1.038236 1.687934 2.606100 1.54211e-10
1.180000 1.051636 1.670557 2.572400 -1.25454e-09
1.170000 1.065220 1.653225 2.538900 -1.92892e-10
1.160000 1.078993 1.635937 2.505600 -4.05451e-10
1.150000 1.092959 1.618693 2.472500 -3.74701e-10
1.140000 1.107122 1.601495 2.439600 4.17211e-10
1.130000 1.121488 1.584341 2.406900 -4.08593e-10
1.120000 1.136061 1.567233 2.374400 -5.48174e-11
1.110000 1.150846 1.550170 2.342100 -8.30743e-10
1.100000 1.165849 1.533153 2.310000 1.04309e-09
1.090000 1.181074 1.516182 2.278100 -6.09943e-10
1.080000 1.196528 1.499256 2.246400 -8.16229e-11
1.070000 1.212216 1.482377 2.214900 -2.10583e-09
1.060000 1.228144 1.465543 2.183600 -3.92793e-10
1.050000 1.244319 1.448757 2.152500 5.87179e-10
1.040000 1.260746 1.432016 2.121600 3.44437e-11
1.030000 1.277433 1.415323 2.090900 2.51721e-12
1.020000 1.294387 1.398677 2.060400 3.80106e-12
1.010000 1.311614 1.382078 2.030100 -7.26729e-11
1.000000 1.329122 1.365526 2.000000 -9.71611e-10
0.990000 1.346919 1.349022 1.970100 -1.57463e-10
0.980000 1.365013 1.332566 1.940400 -3.54069e-10
0.970000 1.383412 1.316158 1.910900 -1.75323e-09
0.960000 1.402125 1.299798 1.881600 1.22291e-10
0.950000 1.421161 1.283486 1.852500 -5.39419e-11
0.940000 1.440529 1.267223 1.823600 3.87696e-12
0.930000 1.460240 1.251009 1.794900 -8.80027e-11
0.920000 1.480302 1.234844 1.766400 -6.70815e-10
0.910000 1.500727 1.218728 1.738100 9.61436e-10
0.900000 1.521526 1.202662 1.710000 4.76444e-10
0.890000 1.542710 1.186646 1.682100 1.52244e-11
0.880000 1.564292 1.170679 1.654400 -2.59356e-10
0.870000 1.586283 1.154763 1.626900 1.72139e-10
0.860000 1.608698 1.138897 1.599600 -3.55223e-11
0.850000 1.631548 1.123081 1.572500 1.7131e-10
0.840000 1.654850 1.107317 1.545600 6.71472e-11
0.830000 1.678617 1.091603 1.518900 -2.38056e-10
0.820000 1.702866 1.075942 1.492400 6.20366e-11
0.810000 1.727613 1.060331 1.466100 7.01344e-12
0.800000 1.752874 1.044773 1.440000 2.18184e-10
0.790000 1.778668 1.029266 1.414100 2.87301e-11
0.780000 1.805014 1.013812 1.388400 1.12056e-12
0.770000 1.831931 0.998411 1.362900 -4.7431e-11
0.760000 1.859441 0.983062 1.337600 1.13006e-11
0.750000 1.887564 0.967767 1.312500 2.09954e-10
0.740000 1.916324 0.952525 1.287600 1.05608e-11
0.730000 1.945745 0.937337 1.262900 7.82623e-13
0.720000 1.975853 0.922202 1.238400 -6.99597e-11
0.710000 2.006673 0.907122 1.214100 1.1627e-09
0.700000 2.038236 0.892097 1.190000 2.03233e-10
0.690000 2.070569 0.877126 1.166100 1.50976e-10
0.680000 2.103705 0.862211 1.142400 -4.11901e-11
0.670000 2.137677 0.847351 1.118900 -9.65387e-11
0.660000 2.172520 0.832546 1.095600 1.18714e-10
0.650000 2.208272 0.817798 1.072500 2.30791e-10
0.640000 2.244971 0.803106 1.049600 6.31654e-12
0.630000 2.282660 0.788471 1.026900 -2.33087e-11
0.620000 2.321384 0.773893 1.004400 1.15288e-10
0.610000 2.361189 0.759372 0.982100 3.28112e-11
0.600000 2.402125 0.744909 0.960000 -2.09156e-10
0.590000 2.444248 0.730503 0.938100 -5.86392e-11
0.580000 2.487613 0.716157 0.916400 1.50482e-11
0.570000 2.532281 0.701868 0.894900 -1.43318e-10
0.560000 2.578318 0.687639 0.873600 5.24755e-11
0.550000 2.625794 0.673469 0.852500 7.99529e-11
0.540000 2.674783 0.659359 0.831600 4.63545e-11
0.530000 2.725365 0.645310 0.810900 1.25467e-10
0.520000 2.777626 0.631320 0.790400 2.53997e-11
0.510000 2.831659 0.617392 0.770100 -3.53922e-10
0.500000 2.887564 0.603525 0.750000 8.39185e-11
0.490000 2.945448 0.589719 0.730100 -2.87918e-11
0.480000 3.005427 0.575976 0.710400 3.40802e-11
0.470000 3.067627 0.562295 0.690900 -5.68594e-11
0.460000 3.132184 0.548678 0.671600 6.73626e-11
0.450000 3.199246 0.535123 0.652500 -1.79279e-10
0.440000 3.268975 0.521633 0.633600 -2.14379e-10
0.430000 3.341546 0.508206 0.614900 6.41868e-11
0.420000 3.417150 0.494845 0.596400 1.22023e-10
0.410000 3.495997 0.481548 0.578100 -1.77731e-11
0.400000 3.578318 0.468318 0.560000 -3.04637e-11
0.390000 3.664366 0.455153 0.542100 7.79335e-11
0.380000 3.754418 0.442055 0.524400 -1.84897e-11
0.370000 3.848785 0.429024 0.506900 9.56664e-12
0.360000 3.947806 0.416061 0.489600 -5.84024e-11
0.350000 4.051861 0.403166 0.472500 4.49981e-11
0.340000 4.161374 0.390340 0.455600 -1.69485e-11
0.330000 4.276816 0.377583 0.438900 7.15468e-12
0.320000 4.398717 0.364896 0.422400 -7.73566e-12
0.310000 4.527676 0.352280 0.406100 1.11767e-11
0.300000 4.664366 0.339734 0.390000 2.25533e-11
0.290000 4.809552 0.327260 0.374100 -5.10486e-11
0.280000 4.964106 0.314858 0.358400 1.52749e-12
0.270000 5.129026 0.302529 0.342900 4.35651e-11
0.260000 5.305462 0.290273 0.327600 2.75542e-12
0.250000 5.494739 0.278092 0.312500 -3.22453e-12
0.240000 5.698404 0.265985 0.297600 -1.3801e-12
0.230000 5.918265 0.253954 0.282900 -3.14961e-11
0.220000 6.156450 0.241999 0.268400 1.49281e-11
0.210000 6.415489 0.230121 0.254100 -2.50418e-12
0.200000 6.698404 0.218321 0.240000 -7.12223e-12
0.190000 7.008848 0.206599 0.226100 4.52561e-13
0.180000 7.351265 0.194957 0.212400 -4.34899e-12
0.170000 7.731133 0.183394 0.198900 5.62339e-12
0.160000 8.155275 0.171913 0.185600 -4.49102e-12
0.150000 8.632308 0.160513 0.172500 -1.1748e-12
0.140000 9.173276 0.149196 0.159600 -1.20799e-13
0.130000 9.792575 0.137962 0.146900 -6.41388e-12
0.120000 10.509337 0.126813 0.134400 -3.86587e-13
0.110000 11.349572 0.115749 0.122100 1.4411e-12
0.100000 12.349572 0.104772 0.110000 3.51549e-13
0.090000 13.561593 0.093883 0.098100 -2.25648e-12
0.080000 15.063763 0.083081 0.086400 3.12605e-12
0.070000 16.978455 0.072370 0.074900 2.08859e-12
0.060000 19.508950 0.061749 0.063600 1.90859e-12
0.050000 23.019941 0.051220 0.052500 7.76339e-13
0.040000 28.238364 0.040785 0.041600 1.86184e-14
0.030000 36.854601 0.030443 0.030900 -5.03431e-13
0.020000 53.921892 0.020198 0.020400 9.60668e-15
0.010000 104.610137 0.010050 0.010100 -1.32458e-14
0.000000 0.000000 0.000000 0.000000 0.000000
-0.010000 -95.399864 -0.009950 -0.009900 1.75667e-15
-0.020000 -46.098113 -0.019798 -0.019600 -5.05507e-16
-0.030000 -29.842086 -0.029543 -0.029100 -3.23543e-15
-0.040000 -21.801682 -0.039183 -0.038400 6.77203e-16
-0.050000 -17.030149 -0.048717 -0.047500 -2.98178e-15
-0.060000 -13.884541 -0.058142 -0.056400 -1.53207e-18
-0.070000 -11.663224 -0.067458 -0.065100 2.51252e-15
-0.080000 -10.016611 -0.076661 -0.073600 -2.55087e-15
-0.090000 -8.751164 -0.085749 -0.081900 -9.74754e-16
-0.100000 -7.751164 -0.094721 -0.090000 -6.96998e-15
-0.110000 -6.943230 -0.103575 -0.097900 7.79732e-16
-0.120000 -6.278611 -0.112307 -0.105600 -1.32528e-14
-0.130000 -5.723678 -0.120915 -0.113100 6.70552e-16
-0.140000 -5.254493 -0.129397 -0.120400 1.41379e-14
-0.150000 -4.853567 -0.137750 -0.127500 2.00334e-14
-0.160000 -4.507828 -0.145970 -0.134400 4.14615e-15
-0.170000 -4.207319 -0.154056 -0.141100 -5.10216e-15
-0.180000 -3.944323 -0.162002 -0.147600 6.49933e-15
-0.190000 -3.712771 -0.169806 -0.153900 3.42351e-15
-0.200000 -3.507828 -0.177464 -0.160000 -7.22422e-15
-0.210000 -3.325595 -0.184972 -0.165900 2.42941e-14
-0.220000 -3.162894 -0.192326 -0.171600 1.27135e-14
-0.230000 -3.017112 -0.199520 -0.177100 7.77176e-15
-0.240000 -2.886083 -0.206552 -0.182400 -1.18473e-14
-0.250000 -2.767994 -0.213414 -0.187500 3.58047e-15
-0.260000 -2.661319 -0.220102 -0.192400 4.34533e-15
-0.270000 -2.564767 -0.226611 -0.197100 -9.56715e-15
-0.280000 -2.477235 -0.232933 -0.201600 2.57919e-14
-0.290000 -2.397782 -0.239063 -0.205900 3.84106e-15
-0.300000 -2.325595 -0.244994 -0.210000 3.11617e-14
-0.310000 -2.259973 -0.250718 -0.213900 2.24888e-14
-0.320000 -2.200309 -0.256227 -0.217600 -1.50723e-14
-0.330000 -2.146072 -0.261515 -0.221100 -5.30999e-14
-0.340000 -2.096803 -0.266571 -0.224400 1.49875e-14
-0.350000 -2.052097 -0.271388 -0.227500 3.99758e-14
-0.360000 -2.011601 -0.275957 -0.230400 -6.55662e-15
-0.370000 -1.975007 -0.280268 -0.233100 3.8815e-14
-0.380000 -1.942042 -0.284311 -0.235600 2.68768e-14
-0.390000 -1.912470 -0.288077 -0.237900 7.36668e-15
-0.400000 -1.886083 -0.291557 -0.240000 1.60095e-15
-0.410000 -1.862701 -0.294741 -0.241900 2.47415e-15
-0.420000 -1.842165 -0.297619 -0.243600 9.98633e-15
-0.430000 -1.824343 -0.300182 -0.245100 3.12429e-14
-0.440000 -1.809117 -0.302423 -0.246400 2.29496e-15
-0.450000 -1.796391 -0.304333 -0.247500 -5.80314e-15
-0.460000 -1.786084 -0.305906 -0.248400 -1.56857e-16
-0.470000 -1.778133 -0.307136 -0.249100 1.21284e-14
-0.480000 -1.772489 -0.308018 -0.249600 9.7363e-15
-0.490000 -1.769116 -0.308548 -0.249900 -2.27682e-16
-0.500000 -1.767994 -0.308725 -0.250000 -3.19744e-14
-0.510000 -1.769116 -0.308548 -0.249900 -2.37684e-16
-0.520000 -1.772489 -0.308018 -0.249600 9.71632e-15
-0.530000 -1.778133 -0.307136 -0.249100 1.20984e-14
-0.540000 -1.786084 -0.305906 -0.248400 -1.9681e-16
-0.550000 -1.796391 -0.304333 -0.247500 -5.85309e-15
-0.560000 -1.809117 -0.302423 -0.246400 2.235e-15
-0.570000 -1.824343 -0.300182 -0.245100 3.11729e-14
-0.580000 -1.842165 -0.297619 -0.243600 9.90638e-15
-0.590000 -1.862701 -0.294741 -0.241900 2.38421e-15
-0.600000 -1.886083 -0.291557 -0.240000 1.50102e-15
-0.610000 -1.912470 -0.288077 -0.237900 7.25678e-15
-0.620000 -1.942042 -0.284311 -0.235600 2.67569e-14
-0.630000 -1.975007 -0.280268 -0.233100 3.86851e-14
-0.640000 -2.011601 -0.275957 -0.230400 -6.69652e-15
-0.650000 -2.052097 -0.271388 -0.227500 3.98259e-14
-0.660000 -2.096803 -0.266571 -0.224400 1.48276e-14
-0.670000 -2.146072 -0.261515 -0.221100 -5.32698e-14
-0.680000 -2.200309 -0.256227 -0.217600 -1.52521e-14
-0.690000 -2.259973 -0.250718 -0.213900 2.2299e-14
-0.700000 -2.325595 -0.244994 -0.210000 3.09619e-14
-0.710000 -2.397782 -0.239063 -0.205900 3.63121e-15
-0.720000 -2.477235 -0.232933 -0.201600 2.55721e-14
-0.730000 -2.564767 -0.226611 -0.197100 -9.79696e-15
-0.740000 -2.661319 -0.220102 -0.192400 4.10549e-15
-0.750000 -2.767994 -0.213414 -0.187500 3.33067e-15
-0.760000 -2.886083 -0.206552 -0.182400 -1.21215e-14
-0.770000 -3.017112 -0.199520 -0.177100 7.48701e-15
-0.780000 -3.162894 -0.192326 -0.171600 1.24182e-14
-0.790000 -3.325595 -0.184972 -0.165900 2.39883e-14
-0.800000 -3.507828 -0.177464 -0.160000 -7.54063e-15
-0.810000 -3.712771 -0.169806 -0.153900 3.09654e-15
-0.820000 -3.944323 -0.162002 -0.147600 6.16185e-15
-0.830000 -4.207319 -0.154056 -0.141100 -5.45023e-15
-0.840000 -4.507828 -0.145970 -0.134400 3.78755e-15
-0.850000 -4.853567 -0.137750 -0.127500 1.96643e-14
-0.860000 -5.254493 -0.129397 -0.120400 1.37583e-14
-0.870000 -5.723678 -0.120915 -0.113100 2.8032e-16
-0.880000 -6.278611 -0.112307 -0.105600 -1.36641e-14
-0.890000 -6.943230 -0.103575 -0.097900 3.46728e-16
-0.900000 -7.751164 -0.094721 -0.090000 -7.42516e-15
-0.910000 -8.751164 -0.085749 -0.081900 -1.45272e-15
-0.920000 -10.016611 -0.076661 -0.073600 -3.05214e-15
-0.930000 -11.663224 -0.067458 -0.065100 1.9874e-15
-0.940000 -13.884541 -0.058142 -0.056400 -5.44974e-16
-0.950000 -17.030149 -0.048717 -0.047500 -3.54382e-15
-0.960000 -21.801682 -0.039183 -0.038400 9.62772e-17
-0.970000 -29.842086 -0.029543 -0.029100 3.2699e-15
-0.980000 -46.098113 -0.019798 -0.019600 5.9771e-15
-0.990000 -95.399864 -0.009950 -0.009900 1.11234e-15
-1.000000 0.000000 0.000000 0.000000 0.000000
x alpha(x) f(x) f(f(x)) f(f(x)) - (x + x^2)