Sugerencia: $\tan(z+w) = \frac{\sin(z+w)}{\cos(z+w)} = {\frac {-i \left( {{\rm e}^{i \left( z+w \ \ derecho) }}-{{\rm e}^{-i
\left( z+w \ \ derecho) }} \right) }{{{\rm e}^{i \left( z+w \ \ derecho) }}+{
{\rm e}^{-i \left( z+w \ \ derecho) }}}}
$ and assume $z=x+iy$ and $w=u+iv$, and work out your proof. It is a good idea to work the left hand side, then the right hand side, and then compare the results. I think it is easier to work with the exponential function than working with sine and cosine functions. Otherwise, you need to use some identities like $\sin(a+B)$ and $\cos(a+B)$, since you have to work out like this function $ \sin((x+u)+i(y+w) ) $. Aquí es lo que usted debe conseguir en ambos lados,
$$ {\frac {4\,\sin \left( x+u \right) \cos \left( x+u \right) {{\rm e}^{2
\,y+2\,v}}-i+i{{\rm e}^{4\,y+4\,v}}}{ \left( 4\, \left( \cos \left( x+
u \right) \right) ^{2}-2 \right) {{\rm e}^{2\,y+2\,v}}+1+{{\rm e}^{4
\,y+4\,v}}}}
\,.$$