$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
\color{#f00}{\int_{0}^{\infty}{x^{2} \over \cosh^{2}\pars{x^{2}}}\,\dd x}\,\,\
&\stackrel{x\ \to\ x^{1/2}}{=}\,\,\,\
2\int_{0}^{\infty}{x^{1/2}\expo{2x} \over \pars{\expo{2x} + 1}^{2}}\,\dd x =
-\int_{x = 0}^{x \to \infty}x^{1/2}\,\dd\pars{{1 \over \expo{2x} + 1}}
\\[3mm] & =
\half\int_{0}^{\infty}{x^{-1/2}\expo{-2x} \over 1 + \expo{-2x}}\,\dd x\
\stackrel{2x\ \to x}{=}\
{\root{2} \over 4}\int_{0}^{\infty}{x^{-1/2}\expo{-x} \over 1 + \expo{-x}}
\,\dd x
\\[3mm] & =
{\root{2} \over 4}\sum_{n = 0}^{\infty}\pars{-1}^{n}
\int_{0}^{\infty}x^{-1/2}\expo{-\pars{n + 1}x}\,\dd x
\\[3mm] & \stackrel{\pars{n + 1}x\ \to x}{=}\
{\root{2} \over 4}\sum_{n = 0}^{\infty}
{\pars{-1}^{n} \over \pars{n + 1}^{1/2}}\ \overbrace{%
\int_{0}^{\infty}x^{-1/2}\expo{-x}\,\dd x}^{\ds{\Gamma\pars{\half}\ =\ \root{\pi}}}
\\[3mm] & =
{\root{2} \over 4}\,\root{\pi}\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over n^{1/2}}
\end{align}
Con la identidad
$\ds{\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over n^{s}} =
\pars{1 - 2^{1 - s}}\zeta\pars{s}}$:
$$
\color{#f00}{\int_{0}^{\infty}{x^{2} \\cosh^{2}\pars{x^{2}}}\,\dd x} =
{\raíz{2} \over 4}\,\raíz{\pi}\pars{1 - 2^{1 - 1/2}}\zeta\pars{\mitad} =
\color{#f00}{{\raíz{2} - 2 \más de 4}\,\raíz{\pi}\zeta\pars{\mitad}}
$$