EDIT: Como se ha señalado por Julián Aguirre mi solución no satisface a la de contorno de Neumann. Voy a copiar su manera y extender el valor inicial a través de $u_0(x)=Q(\delta(x-x_0)+\delta(x+x_0))$ a guardar esto. Voy a ajustar los cálculos de modo que usted puede ver la forma de obtener la solución para su PDE con el ansatz de transformaciones de Fourier.
\begin{align} \partial_t \hat u(k,t) &=- a^2 k^2 \hat u(k,t)
\\ \Longrightarrow \hat u(k,t)&=\hat u(k,0)e^{-a^2k^2t}=Q \left(\widehat{\delta(\bullet-x_0)}(k)+\widehat{\delta(\bullet+x_0)}(k) \right)e^{-a^2k^2t}\\ &=\frac{Q}{\sqrt{2\pi}}\left(e^{ikx_0}+e^{-ikx_0}\right)e^{-a^2k^2t} \\
\Longrightarrow u(x,t)&=\frac{Q}{\sqrt{2\pi}} \bigg( \big(\mathscr{F}^{-1}(e^{ix_0\bullet})*\mathscr{F}^{-1}(e^{-a^2t\ \bullet^2})\big)(x) +\big(\mathscr{F}^{-1}(e^{-ix_0\bullet})*\mathscr{F}^{-1}(e^{-a^2t\ \bullet^2})\big)(x) \bigg)\end{align}
Anteriormente se utilizó $\sqrt{2\pi}\widehat{\delta(\bullet\mp x_0)}(k)=e^{\pm ikx_0}$ y, por tanto,$\mathscr{F}^{-1}(e^{\pm ix_0\bullet})(x)=\sqrt{2\pi}\delta(x\mp x_0)$. Además de la transformada de Fourier de la Gaussiana es bien conocida es decir,\begin{align}\widehat{e^{-bx^2/2}}(k)&=\sqrt{\frac{2\pi}{b}}e^{-\frac{k^2}{2b}}
\\ \Longrightarrow\mathscr{F}^{-1}\left(e^{-\frac{k^2}{2b}}\right)(x)&=\sqrt{\frac{b}{2\pi}}e^{-bx^2/2}\end {align}
Ahora, aplicando esto a nuestro caso (es decir,$b=\frac{1}{2a^2t}$) y darse cuenta de que $\delta(\bullet\pm x_0)*f(x)=f(x\pm x_0)$ finalmente llegamos
\begin{align}u(x,t)&=\frac{Q}{\sqrt{2\pi}}\left(\sqrt{2\pi}\big(\delta(\bullet-x_0)\big)*\sqrt{\frac{1}{4\pi a^2t}}\exp\left(-\frac{\bullet^2}{4a^2t}\right)\right)(x)\\&~~~+\frac{Q}{\sqrt{2\pi}}\left(\sqrt{2\pi}\big(\delta(\bullet+x_0)\big)*\sqrt{\frac{1}{4\pi a^2t}}\exp\left(-\frac{\bullet^2}{4a^2t}\right)\right)(x) \\ &=\frac{Q}{\sqrt{4\pi ta^2} } \bigg(\exp\left(-\frac{(x-x_0)^2}{4a^2t}\right)+\exp\left(-\frac{(x+x_0)^2}{4a^2t}\right) \bigg)\end{align}