$$\cos^2\theta\sin^4\theta=\frac{1}{32}(\cos6\theta-\cos2\theta+2-2\cos4\theta)$$
El uso de $\sin^2 \theta + \cos^2 \theta = 1$ poner todo en términos de coseno:
$$\begin{align}
\cos^2\theta (1 - \cos^2 \theta )^2 &= \frac{1}{32}(\cos6\theta-\cos2\theta+2-2\cos4\theta) \\
\cos^2\theta (1 - 2\cos^2\theta + \cos^4 \theta ) &= \frac{1}{32}(\cos6\theta-\cos2\theta+2-2\cos4\theta) \\
\cos^2\theta - 2\cos^4\theta + \cos^6 \theta &= \frac{1}{32}(\cos6\theta-\cos2\theta+2-2\cos4\theta)
\end{align}$$
El uso de $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ :
$$
\left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2
- 2\left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^4
+ \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^6
=
\frac{1}{32}\left(
\left(\frac{e^{6i\theta} + e^{-6i\theta}}{2}\right) -
\left(\frac{e^{2i\theta} + e^{-2i\theta}}{2}\right)
+ 2
- 2\left(\frac{e^{4i\theta} + e^{-4i\theta}}{2}\right)
\right)$$
Multiplicar:
$$
\begin{align}
\frac{1}{4} & \left( e^{2i\theta} + 2 + e^{-2i\theta} \right) \\
- \frac{1}{8} & \left( e^{4i\theta} + 4 e^{2i\theta} + 6 + 4 e^{-2i \theta} + e^{-4i\theta} \right) \\
+ \frac{1}{64} & \left( e^{6i\theta} + 6 e^{4i\theta} + 15 e^{2i\theta} + 20 + 15 e^{-2i\theta} + 6 e^{-4i\theta} + e^{6i\theta} \right) \\
=
\frac{1}{32} & \left(
\frac{
\left( e^{6i\theta} + e^{-6i\theta} \right) -
\left( e^{2i\theta} + e^{-2i\theta} \right)
+ 4
- \left(2e^{4i\theta} + 2e^{-4i\theta}\right)
}{2}
\right)
\end{align}$$
Combina los términos semejantes:
$$\begin{array} {c}
16 e^{2i\theta} + 32 + 16 e^{-2i\theta} \\
-~ 8 e^{4i\theta} - 32 e^{2i\theta} - 48 - 32 e^{-2i \theta} - 8 e^{-4i\theta} \\
+~ e^{6i\theta} + 6 e^{4i\theta} + 15 e^{2i\theta} + 20 + 15 e^{-2i\theta} + 6 e^{-4i\theta} + e^{6i\theta} \\
=~
e^{6i\theta}
- 2e^{4i\theta}
- e^{2i\theta}
+ 4
- e^{-2i\theta}
- 2e^{-4i\theta}
+ e^{-6i\theta}
\end{array}$$
Así
$$\begin{array} {c}
e^{6i\theta} + 6 e^{4i\theta} + 15 e^{2i\theta} + 20 + 15 e^{-2i\theta} + 6 e^{-4i\theta} + e^{6i\theta} \\
= \\
e^{6i\theta} + 6 e^{4i\theta} + 15 e^{2i\theta} + 20 + 15 e^{-2i\theta} + 6 e^{-4i\theta} + e^{6i\theta}
\end{array}$$