Toma $\arctan\left(x\right)=u,\,\frac{dx}{1+x^{2}}=du $ . Entonces $$I=\int_{0}^{1}\frac{\left(\arctan\left(x\right)\right)^{2}}{1+x^{2}}\log\left(1+x^{2}\right)dx=\int_{0}^{\pi/4}u^{2}\log\left(1+\tan^{2}\left(u\right)\right)du $$ $$=-2\int_{0}^{\pi/4}u^{2}\log\left(\cos\left(u\right)\right)du $$ y ahora utilizando la serie de Fourier $$\log\left(\cos\left(u\right)\right)=-\log\left(2\right)-\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(2ku\right)}{k},\,0\leq x<\frac{\pi}{2} $$ tenemos $$I=\frac{\log\left(2\right)\pi^{3}}{96}+2\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k}\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du $$ y la última integral es trivial de estimar $$\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du=\frac{\pi^{2}\sin\left(\frac{\pi k}{2}\right)}{32k}-\frac{\sin\left(\frac{\pi k}{2}\right)}{4k^{3}}+\frac{\pi\cos\left(\frac{\pi k}{2}\right)}{8k^{2}} $$ por lo que tenemos $$I=\frac{\log\left(2\right)\pi^{3}}{96}+\pi^{2}\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{16k^{2}}-\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{2k^{4}}+\pi\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(\frac{\pi k}{2}\right)}{4k^{3}} $$ y ahora observando que $$\cos\left(\frac{\pi k}{2}\right)=\begin{cases} -1, & k\equiv2\,\mod\,4\\ 1, & k\equiv0\,\mod\,4\\ 0, & \textrm{otherwise} \end{cases} $$ y $$ \sin\left(\frac{\pi k}{2}\right)=\begin{cases} -1, & k\equiv3\,\mod\,4\\ 1, & k\equiv1\,\mod\,4\\ 0, & \textrm{otherwise} \end{cases} $$ tenemos $$I=\frac{\log\left(2\right)\pi^{3}}{96}-\frac{\pi^{2}}{16}K+\frac{\beta\left(4\right)}{2}-\frac{3\pi\zeta\left(3\right)}{128}\approx 0.064824$$ donde la última suma se obtiene utilizando la relación entre Función eta de Dirichlet y la función zeta de Riemann.
0 votos
¿Quizás esto pueda ayudar un poco? math.stackexchange.com/questions/407420/