$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Como una petición explícita del usuario $\color{#88f}{\texttt{@Brevan Ellefsen}}$ me escribió ( supongo que sí ) un conjunto de sugerencias. Espero que sea útil.
\begin{align}
&\sum_{n = 1}^{\infty}\pars{-1}^{n}\,\ln\pars{1 + {1 \over 2n}}
\ln\pars{1 + {1 \over 2n + 1}} =
\sum_{n = 1}^{\infty}\ic^{2n}\,\ln\pars{1 + {1 \over 2n}}
\ln\pars{1 + {1 \over 2n + 1}}
\\[5mm] = &\
\sum_{n = 2}^{\infty}\ic^{n}\,\ln\pars{1 + {1 \over n}}
\ln\pars{1 + {1 \over n + 1}}\,{1 + \pars{-1}^{n} \over 2} =
\Re\sum_{n = 1}^{\infty}\ic^{n}\,\ln\pars{1 + {1 \over n}}
\ln\pars{1 + {1 \over n + 1}}
\\[1cm] = &\
\phantom{-\,\,\,}{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,
\ln^{2}\pars{\bracks{1 + {1 \over n}}\bracks{1 + {1 \over n + 1}}}
\\[2mm] &\ -
{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,\ln^{2}\pars{1 + {1 \over n}} -
{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,\ln^{2}\pars{1 + {1 \over n + 1}}
\\[1cm] = &\
{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,
\ln^{2}\pars{1 + {2 \over n}} -
{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,\ln^{2}\pars{1 + {1 \over n}} -
{1 \over 2}\,\Re\sum_{n = 2}^{\infty}\ic^{n - 1}\,\ln^{2}\pars{1 + {1 \over n}}
\\[1cm] = &\
{1 \over 2}\sum_{n = 1}^{\infty}\pars{-1}^{n}\,
\ln^{2}\pars{1 + {1 \over n}} -
{1 \over 2}\,\Re\sum_{n = 1}^{\infty}\ic^{n}\,\ln^{2}\pars{1 + {1 \over n}} -
{1 \over 2}\,\Im\sum_{n = 1}^{\infty}\ic^{n}\,\ln^{2}\pars{1 + {1 \over n}}
\\[2mm] + & {1 \over 2}\,\ln^{2}\pars{2}
\\ = &\
\mrm{f}\pars{-1} - \Re\mrm{f}\pars{\ic} - \Im\mrm{f}\pars{\ic} +
{1 \over 2}\,\ln^{2}\pars{2}\quad
\mbox{where}\quad
\left\{\begin{array}{rcl}
\ds{\mrm{f}\pars{z}} & \ds{\equiv} &
\ds{{1 \over 2}\sum_{n = 1}^{\infty}z^{n}\ln^{2}\pars{1 + {1 \over n}}}
\\[5mm]
\ds{\mrm{f}\pars{-1}} & \ds{\approx} & \ds{-0.1843}
\\[2mm]
\ds{\Re\mrm{f}\pars{\ic}} & \ds{\approx} & \ds{-0.0649}
\\[2mm]
\ds{\Im\mrm{f}\pars{\ic}} & \ds{\approx} & \ds{\phantom{-}0.2099}
\\[2mm]
\ds{{1 \over 2}\,\ln^{2}\pars{2}} & \ds{\approx} &\ds{\phantom{-}0.2402}
\end{array}\right.
\end{align}
Incluso podemos ir más allá y escribir $\ds{\mrm{f}\pars{z}}$
\begin{align}
\mrm{f}\pars{z} & \equiv
{1 \over 2}\sum_{n = 1}^{\infty}z^{n}\ln^{2}\pars{1 + {1 \over n}} =
{1 \over 2}\sum_{n = 1}^{\infty}z^{n}\pars{\int_{0}^{1}{\dd x \over x + n}}
\pars{\int_{0}^{1}{\dd y \over y + n}}
\\[5mm] & =
{1 \over 2}\,\int_{0}^{1}\int_{0}^{1}\pars{%
\sum_{n = 1}^{\infty}{z^{n} \over n + x} -
\sum_{n = 1}^{\infty}{z^{n} \over n + y}}{\dd x\,\dd y \over y - x}
\\[5mm] & =
{1 \over 2}\,z\int_{0}^{1}\int_{0}^{1}
{\Phi\pars{z,1,x + 1} - \Phi\pars{z,1,y + 1} \over
y - x}\,\dd x\,\dd y
\end{align}
donde $\ds{\Phi}$ es la
Lerch Trascendente Función. Todavía se ve incómodo !!!.