Dejemos que $\displaystyle\binom{r+3}r\left(\dfrac12\right)^{r-1}=\binom{r+3}3\left(\dfrac12\right)^{r-1}=f(r+1)-f(r)$
donde $f(m)=\left(\dfrac12\right)^m\sum_{r=0}^na_rm^r$ donde $a_r$ son constantes arbitrarias
$\dfrac16(r+3)(r+2)(r+1)\left(\dfrac12\right)^{r-1}$ $=\left(\dfrac12\right)^{r+1}\left(a_0+a_1(r+1)+a_2(r+1)^2+a_3(r+1)^3+\cdots\right)-\left(\dfrac12\right)^r\left(a_0+a_1(r)+a_2(r)^2+a_3(r)^3+\cdots\right)$
$\dfrac{r^3+6r^2+11r+6}6$ $=\left(\dfrac12\right)^2\left(a_0+a_1(r+1)+a_2(r+1)^2+a_3(r+1)^3+\cdots\right)-\left(\dfrac12\right)\left(a_0+a_1(r)+a_2(r)^2+a_3(r)^3+\cdots\right)$
Claramente, $a_r=0$ para $r\ge4$
Comparando los coeficientes de $r^3,$ $$\dfrac16=\dfrac{a_3}4-\dfrac{a_3}2\iff a_3=?$$
Comparando los coeficientes de $r^2,$ $$1=\dfrac{a_2+3a_3}4-\dfrac{a_2}2\iff a_2=?$$
Del mismo modo, comparando los coeficientes de $r$ y las constantes, podemos encontrar $a_1,a_0$
Utilizando Serie telescópica , $$\sum_{r=1}^\infty\binom{r+3}3\left(\dfrac12\right)^{r-1}=-f(1)$$