Utilizando la relación entre los números armónicos y la función digamma, a saber $H_{x} = \gamma + \psi(x +1)$ la relación entre la función digamma y la función gamma, $$\psi(x) = \frac{d}{dx} \, \ln(\Gamma(x)),$$ y las integrales: \begin{align} \int_{0}^{1} \sin\left(\frac{\pi \, t}{2}\right) \, \ln\left(\frac{1+t}{1-t}\right) \, dt &= - \frac{2}{\pi} \, \left[ Si\left(\frac{\pi(1-t)}{2}\right) - Si\left(\frac{\pi(1+t)}{2}\right) + \cos\left(\frac{\pi t}{2}\right) \, \ln\left(\frac{1 + t}{1-t}\right) \right]_{0}^{1} \\ &= \frac{2}{\pi} \, Si(\pi) \end{align} \begin{align} \int_{0}^{1} \sin\left(\frac{\pi \, t}{2}\right) \, \ln\left(cot\left(\frac{\pi(1+t)}{4}\right)\right) \, dt &= (-1) \, \left[ t + \frac{2}{\pi} \, \cos\left(\frac{\pi t}{2}\right) \, \ln\left( \frac{\cos\left(\frac{\pi t}{4}\right) - \sin\left(\frac{\pi t}{4}\right)}{\cos\left(\frac{\pi t}{4}\right) + \sin\left(\frac{\pi t}{4}\right)} \right)\right]_{0}^{1} \\ &= -1 \end{align} se obtiene lo siguiente.
\begin{align} I &= \int_{-1/4}^{1/4} \left[ \pi + \left(H_{x+1/4} - H_{x-1/4}\right) \, \cos(2\pi x) \right] \, dx \\ &= \frac{\pi}{2} + \int_{-1/4}^{1/4} \left[ \psi\left(x + \frac{5}{4}\right) - \psi\left(x + \frac{3}{4}\right) \right] \, \cos(2 \pi x) \, dx \end{align} Utilizando la integración por partes se obtiene \begin{align} I &= \frac{\pi}{2} + 2\pi \, \int_{-1/4}^{1/4} \sin(2\pi t) \, \ln\left( \frac{\Gamma\left(t + \frac{5}{4}\right)}{\Gamma\left(t + \frac{3}{4}\right)}\right) \, dt \\ &= \frac{\pi}{2} + \frac{\pi}{2} \, \int_{-1}^{1} \sin\left(\frac{\pi t}{2}\right) \, \ln\left( \frac{\Gamma\left(\frac{5+t}{4}\right)}{\Gamma\left( \frac{3+t}{4}\right)}\right) \, dt \text{ (obtained by setting $t \to t/4$) } \\ &= \frac{\pi}{2} \, \left[ 1 + \int_{0}^{1} \sin\left(\frac{\pi t}{2}\right) \, \ln\left[\frac{\Gamma\left(\frac{5+t}{4}\right) \, \Gamma\left(\frac{3-t}{4}\right)}{\Gamma\left( \frac{3+t}{4}\right) \, \Gamma\left(\frac{5-t}{4}\right)} \right] \, dt \right] \\ &= \frac{\pi}{2} \, \left[ 1 + \int_{0}^{1} \sin\left(\frac{\pi t}{2}\right) \, \ln\left[\frac{1+t}{1-t} \, cot\left(\frac{\pi (1+t)}{4}\right) \right] \, dt \right] \\ &= \frac{\pi}{2} \, \left[ 1 + \frac{2}{\pi} \, Si(\pi) -1 \right] \\ &= Si(\pi). \end{align} Por lo tanto, $$\int_{-1/4}^{1/4} \left[ \pi + \left(H_{x+1/4} - H_{x-1/4}\right) \, \cos(2\pi x) \right] \, dx = Si(\pi).$$
1 votos
La expresión $H_{x+\frac14}-H_{x-\frac14}$ trae a la mente el ecuación funcional de la $\Gamma$ función especialmente a la luz de la relación entre números armónicos y el función digamma .