$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\mc{P}_{N} \equiv
\prod_{n = 2}^{N}\bracks{{1 \over \expo{2}}\pars{n + 1 \sobre n-1}^{n}}\,,\qquad \lim_{N \to \infty}\mc{P}_{N} = {\expo{3} \más de 4\pi}:\ {\large ?}}$
$$
\begin{array}{c}
{\large\mathsf{I'll\ show\ that\ \,\mc{P}_{N}\ has\ a\ closed\ expression.}}
\\
\bbox[15px,#ffe,border:1px dotted navy]{\large%
\mbox{A full and}\ \underline{detailed\ derivation}\ \mbox{is given as follows:}}
\end{array}
$$
\begin{align}
\ln\pars{\mc{P}_{N}} & =
\sum_{n = 2}^{N}\bracks{-2 + n\,\ln\pars{n + 1 \over n - 1}} =
\sum_{n = 2}^{N}\bracks{%
-2\int_{0}^{1}\dd t + n\int_{0}^{1}{2\,\dd t \over 2t + n - 1}}
\\[5mm] & =
2\int_{0}^{1}\pars{1 - 2t}\sum_{n = 0}^{N - 2}{1 \over n + 2t + 1}\,\dd t
\\[5mm] & =
2\int_{0}^{1}\pars{1 - 2t}
\sum_{n = 0}^{\infty}\pars{{1 \over n + 2t + 1} - {1 \over n + N + 2t}}\,\dd t
\\[5mm] & =\int_{0}^{1}\pars{1 - 2t}
\partiald{}{t}\ln\pars{\Gamma\pars{2t + N} \over \Gamma\pars{2t + 1}}\,\dd t
\\[5mm] & =
-\ln\pars{\Gamma\pars{2 + N} \over \Gamma\pars{3}} -
\ln\pars{\Gamma\pars{N} \over \Gamma\pars{1}} +
\int_{0}^{2}\ln\pars{\Gamma\pars{t + N} \over \Gamma\pars{t + 1}}\,\dd t
\\[1cm] & =
-\ln\pars{\bracks{N + 1}\Gamma\pars{N + 1}} + \ln\pars{2} -
\ln\pars{\Gamma\pars{N + 1} \over N + 1}
\\[3mm] & \phantom{=\,\,\,}+
\int_{0}^{2}\ln\pars{\Gamma\pars{t + N} \over \Gamma\pars{t + 1}}\,\dd t
\\[1cm] & =
\int_{0}^{2}\ln\pars{\Gamma\pars{t + N} \over \Gamma\pars{t + 1}}\,\dd t -
2\ln\pars{N!} + \ln\pars{2}\label{1}\tag{1}
\end{align}
Sin embargo,
\begin{align}
&\partiald{}{\alpha}\int_{0}^{2}\ln\pars{\Gamma\pars{t + \alpha}}\,\dd t =
\int_{0}^{2}\partiald{\ln\pars{\Gamma\pars{t + \alpha}}}{t}\,\dd t =
\ln\pars{\Gamma\pars{\alpha + 2} \over \Gamma\pars{\alpha}} =
\ln\pars{\bracks{\alpha + 1}\alpha}
\\[5mm] & \implies
\int_{0}^{2}\ln\pars{\Gamma\pars{t + N} \over \Gamma\pars{t + 1}}\,\dd t =
\int_{1}^{N}\ln\pars{\bracks{\alpha + 1}\alpha}\,\dd\alpha
\\[5mm] & =
2 - 2N + \ln\pars{N + 1} - 2\ln\pars{2} + N\ln\pars{N} + N\ln\pars{N + 1}
\label{2}\tag{2}
\end{align}
\eqref{1} y \eqref{2} rendimiento
\begin{align}
\ln\pars{\mc{P}_{N}} & =
2 - 2N + \ln\pars{N + 1} - \ln\pars{2} + N\ln\pars{N} + N\ln\pars{N + 1} -2\ln\pars{N!}
\\[1cm] & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\,\require{cancel}
2 - \cancel{2N} + \bracks{\cancel{\ln\pars{N}} + \ln\pars{1 + {1 \over N}}} - \ln\pars{2} + \cancel{N\ln\pars{N}}
\\[3mm] & +
\bracks{\cancel{N\ln\pars{N}} + N\ln\pars{1 + {1 \over N}}} -
2\bracks{{1 \over 2}\ln\pars{2\pi} + \cancel{\pars{N + {1 \over 2}}\ln\pars{N}} - \cancel{N}}
\\[1cm] & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\,
2 +\ \underbrace{N\ln\pars{1 + {1 \over N}}}
_{\ds{\to\ 1\ \,\mrm{as}\ N\ \to\ \infty}}\ -\ \ln\pars{4\pi}
\implies
\bbx{\lim_{N \to \infty}\mc{P}_{N} = \ln\pars{\mrm{e}^{3} \over 4\pi}}
\end{align}
$$\bbox[15px,#ffe,border:1px dotted de la marina]{\ds{%
\prod_{n = 2}^{\infty}\bracks{{1 \over \expo{2}}\pars{n + 1 \sobre n-1}^{n}} =
{\expo{}^{3} \más de 4\pi}}}
$$